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Abstract

To date, single neuron recordings remain the gold standard for monitoring the activity of
neuronal populations. Since obtaining single neuron recordings is not always possible,
high frequency or ‘multiunit activity’ (MUA) is often used as a surrogate. Although MUA
recordings allow one to monitor the activity of a large number of neurons, they do not allow
identification of specific neuronal subtypes, the knowledge of which is often critical for
understanding electrophysiological processes. Here, we explored whether prior knowl-
edge of the single unit waveform of specific neuron types is sufficient to permit the use of
MUA to monitor and distinguish differential activity of individual neuron types. We used an
experimental and modeling approach to determine if components of the MUA can monitor
medium spiny neurons (MSNs) and fast-spiking interneurons (FSls) in the mouse dorsal
striatum. We demonstrate that when well-isolated spikes are recorded, the MUA at fre-
quencies greater than 100Hz is correlated with single unit spiking, highly dependent on the
waveform of each neuron type, and accurately reflects the timing and spectral signature of
each neuron. However, in the absence of well-isolated spikes (the norm in most MUA
recordings), the MUA did not typically contain sufficient information to permit accurate pre-
diction of the respective population activity of MSNs and FSls. Thus, even under ideal con-
ditions for the MUA to reliably predict the moment-to-moment activity of specific local
neuronal ensembles, knowledge of the spike waveform of the underlying neuronal popula-
tions is necessary, but not sufficient.

Introduction

The ability to simultaneously monitor the activity of multiple neuronal populations is of critical
importance. Noninvasive techniques such as recordings from scalp EEG electrodes provide an
overview of neuronal activity but fail to identify specific types of neurons, but more invasive
approaches using microelectrodes can provide additional information. Microelectrode record-
ings can parse signals into low frequency activity (<250Hz), termed the ‘local field potential’
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(LFP), and higher frequency activity (>250Hz), termed ‘multiunit activity’ (MUA). The LFP is
thought to represent the “summed” synchronous excitatory and inhibitory post-synaptic
events, whereas the MUA is thought to result from the action potential firing of a combination
of neuronal subtypes.

MUA can sometimes be analyzed further to isolate the activity of single neurons whose
spiking provide a fundamental measure of brain function. However, there are many situations
when microelectrode recordings do not easily permit isolation of the activity of single neu-
rons. For example, gathering MUA without information from well-isolated spikes is common
when chronic microelectrode recordings are performed in non-human primates [1-5] or in
patients with tetraplegia [6, 7]. Even when single neuron recordings are feasible, oftentimes
information about the population as a whole cannot be generalized from the recording of one
or a few neurons.

In the situations described above—which comprise a large fraction of animal and human
electrophysiological experiments—high frequency recordings are easily accessible and reflect
neuronal spiking activity from distances on the order of 100um [8, 9]. Recent studies have
demonstrated that neuronal firing contributes to frequencies as low as 100Hz and the power
in the 100-200Hz range has been shown to correlate with spiking activity in human [10] and
rodent hippocampus [11, 12] as well as in non-human primate visual cortex [13, 14]. Clearly,
if one could estimate the population activity of specific neuronal subtypes by using compo-
nents of high frequency recordings it would be a major step forward and would greatly
enhance our ability to monitor and scrutinize physiological processes. However, the contri-
bution of spiking activity from neuronal subtypes to specific frequency bands is not well
understood.

Two recent findings suggest that high frequency activity may be separable into frequency
bands specific to neuronal populations. First, removing hippocampal pyramidal cell spikes
(pyramidal neuron ‘despiking’) from high gamma (90-150Hz) recordings caused a larger
decrease in power than interneuron despiking, suggesting that pyramidal cells contribute more
than interneurons to activity in this frequency range [11]. Second, using modeling in the rat
CALl it is suggested that action potentials from basket cells contribute less to power in the high
gamma range than do pyramidal neurons [15].

Based on these findings, we sought to test the hypothesis that different frequency bands
within the MUA represent activity from specific populations of neurons. We evaluated
whether microelectrode MUA data represents the spiking activity of neurons, and more spe-
cifically whether such data can allow one to infer differential activity of specific neuron types.
To do so, we recorded spiking and high frequency activity in the MUA range in the dorsal stri-
atum of awake, freely moving mice. We obtained average spike waveforms of two different
neuronal types (medium spiny neurons—MSNs-, and fast spiking interneurons—FSIs) from
the single unit data and used it to define specific frequency bands for analysis in the MUA.
We then analyzed these frequency bands in simulated data in order to evaluate the utility of
these frequency bands in predicting the population activity of specific neurons. We demon-
strate that for a simulated population of neurons low frequency MUA correlated with the
MOSN spiking, while high frequency MUA correlated with the spiking activity of both MSNs
and FSIs. Activity in low frequency MUA predicted the MSN population firing rate with an
accuracy >70%, regardless of FSI activity. However, the overall accuracy of predicting the fir-
ing rate of both populations, even under these ideal conditions where the single unit waveform
of the neurons was known, did not exceed 50%. Together, our study suggests that knowledge
of underlying populations is critical to utilize high frequency activity to predict local ensemble
dynamics, but not always sufficient.
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Results

Experiments were performed on 8-10 week old C57/Bl6 mice (N = 17). Spikes that did not
meet the inclusion criteria (see Methods) were removed from the analysis. The remaining cells
with well-isolated spikes (n = 138, N = 8 mice) were further categorized as MSNs (n = 43), FSIs
(n = 25), or not meeting the criteria for either subtype (n = 70).

Relationship between spiking and high frequency activity

We first examined how action potentials are represented in the frequency domain by perform-
ing spectral analysis on isolated spikes. An increase in power from 1 Hz- 10 kHz was observed
with peak increases from 200Hz - 1kHz during spiking time periods compared to non-spiking
time periods (Fig 1A). Power in a representative frequency band (300-400 Hz) during an iso-
lated spike exhibited a significant correlation with the width of the action potential (FWHM;
Fig 1B; r = 0.64; n = 138 cells, p < 0.01, Student’s t-statistic, df = 136) and the peak-peak ampli-
tude (Fig 1C; r=.88; p < .01, df = 136). Across all frequencies, the relationship of spectral
power and both spike width and peak-peak amplitude was higher between 100-2000 Hz and
decreased at the frequency range <100 Hz and >2 kHz (r > 0.5; Fig 1D and 1E).

Examining the effect of spiking characteristics (peak-peak amplitude, firing rate) on the fre-
quency content of a spike waveform is difficult as spiking characteristics recorded extracellu-
larly are not independent (e.g., in our dataset, action potentials with larger spike width tended
to have lower firing rates). To remove this confound and examine the effect of one spiking
attribute on frequency content, we selected a spike at random and modified either its amplitude
or firing rate while constraining the other two variables. Increasing the firing rate (while con-
straining amplitude and spike width) or amplitude (while constraining firing rate and spike
width) resulted in a strong correspondence between spiking characteristics and power in fre-
quency bands above 50 Hz (¥iing rate, power > -5 for frequencies 50-100Hz and > .9 for frequen-
cies > 100HZ; Tamplitude, power > -9 for frequencies >50Hz; S1 Fig).

Because spiking attributes correlated with power in high frequencies, we hypothesized that
increases in high frequency activity would reflect the timing of single spikes. For each neuron,
we calculated the probability that high frequency activity increased during times of spiking. An
example of this analysis using three simultaneously recorded spikes is found in Fig 2A. Power
in a representative frequency band (300-400Hz) increased during time periods of spiking for
these neurons (Fig 2A; sensitivityspp_s00m, = 0.90-0.99). Group analysis of all neurons across all
frequency bands demonstrated that high frequency power above 100 Hz detected spikes with a
sensitivity of 55-73% and specificity 88-91% (Fig 2B).

Neuronal cell types have specific high frequency signatures

Next, we investigated if neuronal subtypes exhibit ‘spectral signatures’-that is, differential
power distributions that may help identify time periods of spiking activity from specific popu-
lations. Previous analysis demonstrated that spiking characteristics (amplitude and spike-
width) predict the power in high frequency bands (Fig 1). To this end, we next describe the
spectral signatures in defined populations of cells to examine which frequency bands better
represent each population. We first sorted spikes into medium spiny neurons and fast-spiking
interneurons based on their spike-width and firing rate (see Methods for spike sorting proce-
dure). The summary of the Spike waveform characteristics of the sorted cell populations are
shown in Fig 3. As expected from our sorting definition for assigning cell type identity, MSNs
had broader (larger FWHM) action potentials and lower firing rates, while FSIs on average
had narrow action potentials and higher firing rates (Fig 3B, nysn = 43; ngsy = 25; p < .001,
unpaired t-test, df = 24), consistent with previous studies [16]. In addition, we found that once
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Fig 1. High frequency activity contains power from spikes above 100Hz. A) Frequency representation of
data containing spikes and not containing spikes. The spike used to calculate the frequency decomposition is
shown on the left. Power due to noise in the recording at 5KHz was removed from the analysis. B-C)
Relationship of B) width and C) peak-peak amplitude of spikes (n = 70) to power in the 300-400Hz band. D-E)
Comparison of spiking characteristics to power across frequency bands. The correlation value from B and C
is calculated for each band and plotted in D and E, respectively. Time scale = 1ms. FWHM = full width at half
maximum.

doi:10.1371/journal.pone.0153154.g001

sorted to these cell types MSNs had larger amplitudes. This was likely due to the fact that dur-
ing experiments for practical reasons faster spiking or large amplitude neurons were more
likely to be selected for recordings. To remove this potential confound, the frequency decom-
position of all spikes was normalized. Overall, compared to FSIs, MSN’s contributed a signifi-
cantly larger proportion of power in lower frequencies (< 2 KHz) and a smaller proportion of
power in higher frequencies (> 2 KHz) (Fig 3B, p < 0.0001, unpaired t-test, df = 24).

As this analysis focused on the frequency content of single action potentials, to examine the
power contribution of each cell in a recording segment, we adjusted for differences in firing
rates by multiplying the normalized power of the spike waveform by the mean firing rate of
each neuron. Across all recordings, a significant increase in overall power was observed from
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Fig 2. High frequency power can reliably detect spikes. A) 5s trace of power in 300-400Hz. Raster plots represent spikes whose color matches the
waveform on left. Using a detection threshold (z > 2, dotted line), the sensitivity for three spikes on left was calculated. These percentages are shown next to
their spike waveform. B) Sensitivity and specificity as a function of frequency for all cells, MSNs, and FSls. Error bars denote SE. Time scale =1 ms.

doi:10.1371/journal.pone.0153154.9002

PLOS ONE | DOI:10.1371/journal.pone.0153154  April 25,2016 4/20



el e
@ ' PLOS ’ ONE Differentiating Population Activity with Multiunit Data

> 1400

=S

~ 1200 ’,\T

(0]

o T

2 o)

= i)

2 o

© o
c

X =

DI- [

X

o

0.5

0.4

0.3

0.2

<2KHz Power
>2Khz Power

0.1

o 2
& &

0

= MSNs n=43
= FSls n=25
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency (Hz)

Normalized Power

O

8.
* k  kk kk kk kk kk k%
7.
== ISNs
5 = FSls
N
> 5t
=2
—  4f
2
3 9
o,
1k

10" 102 10° 104
Frequency (Hz)
Fig 3. Neuronal cell types have specific high frequency signatures. A) Left: Example spike waveforms of
MSNs and FSils. Right: MSNs exhibit wider width, higher amplitude, and lower firing rates. B) Mean power
spectrum of MSN and FSls. Mesh represents standard error. Each spike is normalized by the area under the
curve prior to averaging. Insert: Comparison of power above and below 2KHz. C) Total power contribution
from well-isolated spikes in a given frequency band. Analysis takes into consideration power in each

frequency band due to a single spike as well as the firing rate of that cell. Error bars denote SE. Time
scale = 1ms. ***p <.001, **p <.01, *p <.05.

doi:10.1371/journal.pone.0153154.g003

100-1000 Hz in MSNs compared to FSIs (p<0.05, unpaired t-test, uncorrected, df = 24), but
became non-significant when correcting for multiple comparisons (Fig 3C). On the other hand,
FSIs exhibited a higher power contribution in frequencies >2 KHz when compared to MSNs.
(Fig 3C, p<0.01, unpaired t-test, df = 24, Bonferroni correction for multiple comparisons).
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We then examined how well can one detect and classify spikes as MSNs or FSIs based on
these spectral signatures. First, time points of multiunit power (>300 Hz) exceeding a set
threshold were extracted (Fig 4A, black trace). During these times, spikes were often observed
(Fig 4A, red lines). Next, wideband data during these periods were extracted and frequency
decomposition was performed at the single-trial level. The mean frequency representation of
putative spikes for two different recordings is illustrated in Fig 4B. For each putative spike,
power in lower (500-600 Hz) and higher (3-3.5 KHz) frequency bands was used as features to
classify the spike as either an MSN or FSI using a binary classifier (Fig 4C). These frequency
bands were chosen because as discussed earlier they exhibited the strongest difference of power
between the two cell types. The mean spike waveform of putative MSN and FSIs from this clas-
sification are shown in Fig 4D (top panel). Across all neurons, spikes from MSNs were cor-
rectly identified from the spectral power classifier with an accuracy of 80%, while spikes from
FSIs were correctly identified with an accuracy of 78% (Fig 4D, bottom panel). Thus clearly,
the classifier performed well above chance level when identifying both classes of neurons (dot-
ted black line).

High frequency activity is a poor predictor of ensemble dynamics

Following identification of a spectral signature for each neuronal subtype, we hypothesized
that in the absence of a well-isolated spike populations of spikes will also exhibit spectral signa-
tures that may be used to differentiate the properties of population activity on a moment-to-
moment basis. To examine if high frequency activity ‘tracks’ population activity dynamics, we
simulated resting and evoked responses from a population of cells with distributions and spik-
ing attributes similar to the experimental data (see Methods for details). Evoked data consisted
of times where MSN:ss, FSIs, or both populations were modulated. The proportion of the popu-
lation that was responsive to the ‘evoked stimulation” was also varied (0-100% of neurons).
The simulation paradigm, raster plot of a subset of cells, instantaneous population firing rates
of MSNs and FSIs during periods of increased and decreased evoked activity, and summed
action potentials for MSNs and FSIs are shown (Fig 5A-5D). The details of the simulations are
described in the methods section but, in brief, a sine wave was used to modulate the firing rate
of MSN and FSI neurons at various time intervals to produce the following conditions: sponta-
neous firing of both MSNs and FSIs (no modulation; 0-10 s); MSN modulation (10-20 s), FSI
modulation (20-30 s), modulation of MSNs and FSIs such that changes are negatively corre-
lated (30-40 s), and modulation of MSNs and FSIs such that changes are simultaneous and
positively correlated (40-50 s). Maximum instantaneous firing rates when 0% of neurons

were modulated were 3.7 Hz for MSNs and 19.2 Hz for FSIs. At 100% modulation, maximum
instantaneous firing rates increased to 78.2 Hz for MSNs and 141.5 Hz for FSIs. To test as
many different conditions as possible, each simulation tested a wide range of population firing
rates. For example, when 100% of MSNs were modulated, the population firing rates varied
from 0 to 78.2Hz (Fig 5C). Finally, the aggregate signal based on the total spiking of all MSNs
and FSIs used in the model was calculated. The total duration (left) and a subset (right) of these
signals can be found in Fig 5D. The aggregate MSN and FSI signal was the signal which was
used in subsequent analyses.

After computing the aggregate signal from the spiking activity of all neurons (MUA), we
examined the relationship between high frequency power in the MUA signal and the individual
population firing rate of MSNs and FSIs. An example of the MSN and FSI population activity
as well as simultaneous power measurements in low MUA (0.3-2 KHz) and high MUA (8-10
KHz) are shown in Fig 6A. Correlation analysis was performed between the firing rates of
MSNs and FSIs against band-limited power (BLP) measurements in each frequency band
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Fig 4. High frequency power can predict neuronal cell type from single spikes. A) BLP trace of
recording. Raster plot represents times of increased activity above threshold (dotted line). B) Single trial
power spectrum from time periods exhibiting high BLP. Features used for the binary classifier were extracted
from the power spectrum as high and low power in frequencies. C) Support vector machine training set. Two
channels were used for the training set. D) Top panel: Mean waveform traces extracted from time periods
where the ratio of power in the high (3000-3500Hz) to low (500-600Hz) frequency bands were increased (red
trace) and decreased (blue trace) as classified by the method illustrated in (C). Bottom panel: Group
accuracy of classifying neuronal cell types based on spectral signature on a single trial basis. Power in low
and high frequency bands were used as features in the binary classifier.

doi:10.1371/journal.pone.0153154.g004

within the MUA signal and at each time period. An example of the correlation analysis between
one cycle of MSN firing rates and low MUA is shown (Fig 6B, from vertical lines in Fig 6A and
denoted in blue circles in Fig 6C). At rest (during stochastic firing; 0-10 s), the firing rate of
MSNs exhibited stronger correlation with power in lower frequencies (< 3 KHz) than higher
frequencies (> 7 KHz), although this correlation was low (Fig 6C; r = 0.1-0.2; small blue cir-
cles). FSI spiking demonstrated stronger but low correlation in higher frequencies (Fig 6C;

r = 0.1-0.2; small red circles). When the input drove both FSI and MSNs, the correlation
between firing rate and power in both lower and higher bands increased (r = 0.6-0.7, blue and
red x markers). During time periods where the input drove MSNs but not FSIs, a higher corre-
lation was observed between MSN spiking and power in lower and higher bands (r = 0.6-0.7,
open blue circles). In contrast, when inputs drove only FSIs, a correlation between FSI spiking
and power in higher bands was observed (r = 0.6-0.7, open red triangles). When one population
was modulated but not the other, correlations between firing rates of the opposite population
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doi:10.1371/journal.pone.0153154.9005

and power was low for all frequency bands (r < 0.2, open red circles and blue triangles). In
other words, lower MUA frequency bands correlated with a) MSN firing rates when the input
drove MSN spiking only and b) MSN and FSI firing rates when the input drove MSN and FSI
spiking. In contrast, higher MUA frequency bands correlated with a) FSI firing rates when the
input drove FSI spiking, b) MSN firing rates when the input drove MSN spiking, and ¢) MSN
and FSI firing rates when both populations were simultaneously responsive. The shift between
low and high MUA tracking different neuronal populations appeared to exist between 3-6KHz
(Fig 6C).

Taken together, low and high MUA frequency bands tracked MSN activity when MSNs
were being actively driven. Interestingly, only high MUA frequency bands could track FSI spik-
ing when FSIs were being actively driven. Correlations were higher when both populations
were being driven together, although this is difficult to evaluate under experimental conditions.
For example, while it is possible that a single input may simultaneously drive both MSNs and
FSIs, a continuous, simultaneous train of inputs (similar to the simulation presented in this
work) will lead to interneurons directly inhibiting MSNs, blurring the ability to evaluate this
observation. There was no correlation between power in the MUA signal and the firing rate of
the population not being modulated. In summary, we observed that the low MUA power was
sensitive to changes in the MSN population, while high MUA power was sensitive to changes
in both the MSN and FSI population.

Given the correlations observed, we next explored how well the power in low (0.3-2KHz)
and high (8-10KHz) MUA frequency bands can predict the behavior of each population of
neurons. The spike waveform of six representative MSNs and FSIs that were used in the simu-
lation are shown in Fig 7A. Fig 7B plots the results of the simulation when 60% of neurons
were modulated (as an illustrative example). Each data point on the scatter plot represents
10ms of time and the color of that data point represents the instantaneous population activity
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doi:10.1371/journal.pone.0153154.g006

PLOS ONE | DOI:10.1371/journal.pone.0153154  April 25,2016

9/20



el e
@ ' PLOS ‘ ONE Differentiating Population Activity with Multiunit Data

C 10

o

0 200 400 600 800
Low MUA Power (Z)

0.8
A B . MSN FSI 2
L o 02
’1!‘ __ 707" Lo .
_\/-\ u IZI T T < 0 0O 20 40 60 80 100
-~ —H— E 607 1] o T - D Proportion modulated (%)
\/ v C;) 50':.:| o - T . 1.0 60% modulation
A 4 o
<C 40}/ o I §
A s g - - 3
307, Q
=L} o -4 <
T 20r k. AV A= =A =¥ Y- V¥ ¥h A4
T : o | 1 E Popult':ltion respon;e
101 ‘: T i =
s
@
S
(&}
(8]
<C

0 20 40 60 80 100
Proportion modulated (%)

Fig 7. In the absence of well-isolated spikes, the spectral signature of MUA is a poor predictor of evoked neuronal ensemble dynamics. A)
Representative MSN (blue) and FSI (red) spike waveforms used in simulation. Time scale = 1ms. B) Results of simulations of high frequency activity derived
from spiking. Data is from simulation where 60% of neurons were modulated. Each data point represents the low and high frequency power during 10ms time
windows in the simulation. Colored data points represent time bins where the instantaneous firing rate of certain populations deviated from baseline. For
each color, the direction of simulated spiking activity for MSNs and FSls is shown in the legend on the right panel. For example, green dots represent 10ms
time bins where both MSNs and FSls increased in spiking activity. Black dotted lines represent the significance threshold for determining if low or high MUA
reached significance (>2SD) during a time window. The gray dotted insert shows a detailed version of data on the left of the figure. C-E) Classifier results. C)
Overall accuracy for correctly predicting population activity as a function of the proportion of neurons whose activity was modulated during the simulation.
Dotted line denotes chance level (8-way classifier). D) Relationship of the accuracy of detecting each type of firing rate deviation on the overall accuracy of
technique. Data is shown for simulation where the input drives 60% of neurons. E) Accuracy of predicting MSN dynamics with low MUA and the accuracy of
predicting FSI dynamics with high MUA. Data shown as a function of the proportion of neurons modulated during simulation.

doi:10.1371/journal.pone.0153154.9007

of MSNs and FSIs during that time compared to resting conditions. Points of gray color denote
no difference of MSN or FSI population firing when compared to rest, while other colors repre-
sent significant deviations from rest. Dashed black lines in both directions represent two stan-
dard deviations from resting high frequency power. In general, an increase and decrease in
MOSN spiking resulted in a rightward and leftward shift in low MUA (0.3-2KHz) power, respec-
tively, while an increase and decrease in FSI spiking resulted in an upward and downward shift
of high MUA (8-10KHz) power. However, it is evident that it is extremely difficult to accurately
categorize FSI spiking when MSN population spiking also increases at the same time (Fig 7B,
insert).

Using these two features (low and high MUA), for each time point that deviated from rest,
we calculated the accuracy of high frequency activity to predict changes in the instantaneous
population firing of MSN's and FSIs. Overall, accuracy levels ranged from 6.8 to 54.5% when
0% and 100% of neurons were responsive to input (Fig 7C). As eight possibilities exist regard-
ing the change in firing rates of MSNs and FSIs (see Fig 7D), assignment accuracy was com-
pared to a chance assignment accuracy of 0.125. To illustrate the accuracy of the individual
firing rate patterns included in the comprehensive analysis from Fig 7C, a breakdown of the
simulation when 60% of neurons are driven is shown as an illustrative example in Fig 7E. In
this example, the accuracy of correctly predicting time periods when MSNs increased activity
and FSIs did not were below chance level, while time periods when both populations increased
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exceeded 90% (Fig 7D; 8-way classifier, 12.5% chance level). For the 2-way classifier (when
either low MUA is predicting MSN patterns or high MUA is predicting FSI patterns), the abil-
ity to correctly predict the dynamics of FSIs slightly exceeded chance level (51.1% to 56.2%),
while MSN prediction varied from 68.8 to 80.3% for 20% and 100% responsiveness, respec-
tively (Fig 7F; 2-way classifier, 50% chance level). Note that this 2-way classifier evaluated the
accuracy of predicting one subtype population activity dynamics while the other population
increased, decreased, or did not change.

Finally, we examined the ability of MUA to predict population activity dynamics on a con-
tinuous scale as opposed to a discrete classifier. Using low MUA to predict MSN dynamics and
high MUA to predict FSI dynamics, we computed a predicted population firing rate (see Meth-
ods) for each time point and compared that to the actual population firing rate for each type of
neuron. As a representative example, when 60% of neurons were responsive to the input, low
(0.3-2KHz) MUA closely predicted MSN population firing rates (Fig 8A, r = 0.93, p < .001,
Student’s t-statistic, df = 28). Qualitatively, this was true for both at low and high firing rates,
although this correspondence dropped off at higher population firing rates. Similarly, overall
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Fig 8. Accuracy of MUA predicting evoked population dynamics depends on population parameters. A-B) Comparison of actual and predicted
population firing rate for A) MSNs from low MUA (0.3—2 KHz) and B) FSls from high MUA (8—10 KHz). Data is from simulation where 60% of neurons were
modulated. Dotted vertical line denotes mean population firing rate. Dotted diagonal line represents unity line. Error bars denote S.D. Correlation value is
from linear best-fit line. Note that at high population firing rates MSNs are not predicted well from low MUA, and at low population firing rates FSls are not
predicted well from high MUA. C-D) Surface plots of prediction error for C) MSNs and D) FSls as a function of actual population firing rate and the percent of
population responsive to input. Transparent planes represent mean firing rate of population (vertical plane) and 0% prediction error (horizontal plane).

doi:10.1371/journal.pone.0153154.g008
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MUA closely predicted FSI activity (Fig 8B; r = 0.85, p < .001, df = 28). In contrast to MSNs,
qualitatively high MUA predicted FSI spiking well at high firing rates but poorly at low firing
rates. When examining these relationships as a function of firing rate and percent of neurons
responsive to input, it is evident that firing rate changes had larger effects on predictability
than the percent of modulated neurons (Fig 8C and 8D). At firing rates below the mean, MUA
poorly predicted ensemble spiking for both populations, with >100% error below the mean fir-
ing rate of each population. For MSNss, firing rates between 3.5 to 23.4Hz yielded a <25% error
in low MUA predicting MSN population spiking. For FSIs, firing rates between 10 and 35Hz
yielded a <25% error in high MUA predicting FSI spiking. It is interesting to note that, for all
datasets, the percent of neurons which were responsive to input did not significantly change
the ability for MUA to predict population dynamics.

Discussion

In this study we tested the efficacy of high frequency activity in extracellular recordings to pre-
dict the spiking activity of specific neuronal subtypes. We demonstrate the following:

1. in the presence of a well-isolated spike, high frequency activity in the upper LFP and MUA
range accurately detected and characterized the spiking of neuronal subtypes based on the
action potential’s spectral signature, where spikes with broad action potentials exhibited
more power in frequencies below 2KHz compared to spikes with narrow action potentials.

2. Neuronal subtypes could be categorized based on features of the high frequency activity at
the single trial level with 80% accuracy.

3. Simulations of neuronal populations demonstrated that low MUA tracked MSN activity,
while high MUA tracked both MSN and FSI populations. When predicting the direction
and subtype class of both types of neurons, MUA predicted the correct pattern with 40-50%
accuracy; above the chance level but not high enough for practical implementation. Individ-
ually, low MUA predicted the MSN pattern with 60-80% accuracy, raising the possibility of
practical use. However, this accuracy decreased significantly when MSNs were inhibited.
On the other hand, high MUA predicted the FSI pattern with accuracy around chance and
the accuracy decreased further when FSIs were inhibited.

We conclude that in general MUA activity is a poor predictor of specific population activity
and that only during specific conditions may MUA potentially have practical applications.
Regardless of the condition, spectral components of spikes within each population must be
known, but even then the separation of populations within MUA must be performed with
caution.

From spiking to high frequency activity

Converging evidence suggests that components of spiking are represented in extracellular
recordings at frequencies >100Hz. In this work, the probability that a spike elicited significant
increases in high frequency activity was <50% for frequencies <100Hz, >50% for frequencies
>100Hz, and maximum (at 75%) at 1KHz. This data suggests that LFP power <100Hz (and
especially <30Hz) does not provide a good proxy for spiking activity, whereas high frequency
activity >100Hz at least partially represents spiking activity in the dorsal striatum. This data

is consistent with previous work reporting a strong correlation between spiking and LFP
activity > 100Hz in primate visual cortex [13, 14, 17, 18], rodent hippocampus [11, 19], and
human auditory cortex [20, 21]. The variety of species and structures exhibiting this correspon-
dence supports the notion that this relationship may be ubiquitous.
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Spectral signatures of neuronal subtypes

Spikes from different neuronal classes have extracellular spectral signatures than can some-
times by accurately categorized using these features. In this work, action potentials with
broader spike widths identified as MSNs exhibited higher power in lower MUA (0.3-2KHz),
whereas FSIs with narrower spike widths exhibited greater power in higher MUA (8-10KHz).
Furthermore, the power in low and high frequency components were able to differentiate neu-
ronal subtypes with 80% accuracy on a trial-to-trial basis. The observation that spiking is repre-
sented in the LFP frequency range (<250Hz) [17, 22] has motivated groups to examine the
“despiked” LFP [22, 23]. Indeed, a significantly larger power decrement at frequencies >150Hz
was observed following hippocampal pyramidal cell “despiking” compared to when interneu-
rons were removed [11], supporting our observation as pyramidal cell spikes have broader
spike widths compared to fast-spiking interneurons [24]. Unfortunately, analysis in this prior
study was confined to frequencies below 1KHz [11], above which we would predict interneu-
ron “despiking” to result in a larger power decrement compared to pyramidal cell removal. In
summary, spectral signatures appear to be able to in principle differentiate neuronal classes
based on their spike waveform.

Tracking neuronal populations with high frequency activity

Because of the ambiguous neuronal source of not well isolated action potentials, it is difficult to
examine the effect of background spiking on MUA [11]. For these reasons, we modeled this
‘background’ neuronal activity and assessed the degree to which MUA predicted population
spiking. Our results demonstrate that utilizing background spiking activity to track moment-
to-moment population firing rates depends on the spike waveform, distributions of neuronal
classes, and the strength of responses. Accuracy was highly dependent on the direction of the
change in the activity (increase or decrease) and type of neuron that was modulated and was
less dependent on the proportion of neurons that were modulated. High MUA predicted FSI
activity less accurately than low MUA predicted MSN activity. A likely explanation is that the
MOSN spike waveform consists of both high and low frequency components; an initial sharp
rise during the depolarization phase followed by a slower hyperpolarization and overshoot.
Thus when MSNs increased their firing rate it was possible to detect their increased activity,
but as MSN spiking leaks into higher frequencies, FSI changes, if present, were not discernable
(Fig 7C and 7E). In contrast, because the FSI spike waveforms consist primarily of sharp high
frequency deflections, changes in their spiking activity were evident only in the high MUA
band.

Although it is tempting to conclude that low MUA may be used to predict MSN or other
populations with broad spikes, one must proceed with caution. First, when using low and high
MUA to predict both populations’ activity, accuracy was 40-50% regardless of the proportion
of neurons that were modulated. Although this was well above chance level (12.5%), it is
important to note that above chance does not necessarily mean above a threshold that becomes
practical to implement. With <50% discriminability, this technique cannot be used reliably to
predict both populations’ activity. However, it may be possible to use low MUA to predict
MOSN activity. During times when the input drove MSN spiking, low MUA power predicted the
direction of MSN spiking changes with an accuracy exceeding 70% (Fig 7F), well above chance
(50%) and above the threshold to support practicality. This high level of discriminability was
evident regardless of the proportion of MSNs modulated. When examining this in more detail,
however, the ability to predict MSN activity decreases sharply at firing rates below the mean as
well as at very high firing rates (Fig 8C), thus significantly limiting its practical use. Often
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physiological events involve periods of excitation paired with inhibition; therefore, it may not
be feasible for low MUA to accurately monitor MSN activity during many physiological events.

Limitations of estimating population activity from MUA

Although the spike waveforms and firing rates in the simulation were derived from experimen-
tal recordings and neuronal distributions were comparable to previous reports [16, 25], several
differences between these simulations and experimental recordings may confound the ability
to use the MUA to track neuronal populations in vivo. First, in our simulations we did not vary
the distance from the neuron’s spike initiation zone to the recording site. I vivo, the heteroge-
neous distances from each neuron to the recording electrode would result in a distribution of
spike amplitudes and waveforms. Presumably this filtering of action potential waveforms may
lower the overall frequency content of each spike, potentially blurring the divide between fre-
quency bands. Second, neuronal synchronization has been shown to influence high frequency
activity [18] but was not varied in this simulation and likely will affect the ability to track popu-
lations at various synchronization levels. Third, it is important to note that even in the idealized
situation of inserting the average spike waveform to represent single action potentials, it was
difficult to use MUA to separate and predict the temporal dynamics of neuronal populations.
Fourth, these simulations assumed that activity >300Hz is comprised solely of action poten-
tials. While the notion that MUA primarily reflects spiking activity is generally accepted, fast
components of excitatory and inhibitory post-synaptic potentials may be partially represented
in these frequencies. It should be noted, however, that the simplicity of the simulation reported
here strengthens the argument that it is difficult to predict population activity from different
neuronal classes without prior comprehensive understanding of the underlying neuronal dis-
tributions and population activity. Thus although a more complex simulation should be per-
formed that takes these factors into account, it is likely that adding complexity to the origin of
MUA by incorporating fast EPSP/IPSPs into the signal, lowering the signal-to-noise ratio by
using non-averaged spike waveforms, and simulating spikes generated from heterogeneous dis-
tances from the microelectrode together will further lessen the ability to predict population
spiking from specific frequency bands. Together, these important considerations highlight the
fact that only population spiking from certain neuron subtypes were predicted from back-
ground multi-unit activity and this applicability likely diminishes for in vivo recordings. In
conclusion, we suggest that MUA cannot be used to estimate population spiking without prior
knowledge of spectral components of spikes within each neuronal class.

On the other hand, several considerations should be noted that may increase the ability for
the multiunit signal to track population dynamics. First, recordings in this report were con-
ducted on awake, freely moving mice. Presumably, in a behavioral task where neurons modulate
their spiking activity in a more homogeneous manner, population activity may be better
extracted from multiunit activity. Second, the ability to predict population activity with the mul-
tiunit signal may vary between regions. MSNs receive multiple synaptic inputs yet have low
overall firing rates. This input/output discrepancy is less in other regions, such as the hippocam-
pus. Furthermore, in other regions, the overall firing rate of the principal neuron is much higher
than MSNs (i.e. Purkinje cells in the cerebellum). Therefore, the ability to predict population
activity from multiunit signal may be higher in regions whose neurons’ firing rate is higher. As
such, this work should be repeated in other regions before these findings can be generalized.

Materials and Methods

Experiments were performed in accordance with guidelines set by and with specific written
approval from the Institutional Animal Care and Use Committee of Albert Einstein College of
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Medicine. Experiments were conducted on 8-10 week old C57/Bl6 mice of either sex. 17 total
mice were used for this study. Mice were allowed at least four days to recover from surgery
before recording. The main findings of this manuscript did not differ across animals or record-
ing days. Following the completion of experiments, animals were sacrificed by administering
the anesthetic isoflurane, perfused with 4% paraformaldehyde. Administration of isoflurane
was performed in order to alleviate the animals’ suffering. Brains were recovered for histologi-
cal verification of recording sites.

Electrodes and implantation

Custom-made drivable 8-microwire (Tungsten, 50 pm, AM Systems) arrays [26] were
implanted into the dorsolateral striatum (ML 2.5 mm; AP 0.5 mm; DV 1.5 mm). Signals were
referenced to an uninsulated wire in the array. In the absence of well-isolated spikes, arrays
were advanced at 75 or 150 pm intervals for a maximum of 150 pm/week. In each animal, elec-
trodes were advanced a maximum of 1.5 mm such that the recordings were confined to the
dorsal aspect of the striatum. Electrode positions were confirmed by lesioning (60 pA, through
each electrode for 30 s) and postmortem histology.

Recordings

Signals were amplified 5000x with a headstage (Tucker-Davis Technologies) and a homemade
amplifier (150 Hz—10 kHz, RC bandpass) and digitized at 20 kHz with a National Instruments
card (PCI-MIO-16XE). Signals were acquired using custom-written software in Labview. To
analyze single unit activity, signals were wavelet filtered [27] in MATLAB (Mathworks, Natick,
MA) and sorted offline using principle component analysis (Offline Sorter, Plexon, Dallas,
TX). Units exceeding 4x signal SD were included in all subsequent analyses. Waveform shapes
were quantified in MATLAB. Brief waveform signals (putative interneurons) were defined as
those units which had positive deflections with full width at half maximum (FWHM or ‘spike
width’) < 200 ps. Long duration waveform signals (putative medium spiny neurons) were
defined as those units which had positive deflections with FWHM > 200 ps and firing rates
of < 2 Hz [16, 25].

Frequency analysis

To represent wideband (0.3 Hz- 10 KHz) recordings in frequency space, we utilized two
approaches. When examining the frequency content of spike waveforms, the data segment of
interest was extracted (10 ms before and after the spike) and transformed using a fast-fourier
algorithm (MATLAB) with 2048 frequency bands from 0.3 Hz- 10 KHz. To account for differ-
ences in spike amplitude that may reflect recording sampling biases rather than physiological
differences, the output of each frequency transform was normalized to the area under the fre-
quency decomposition curve. Power in the 4500-5000Hz band has been removed due to envi-
ronmental noise peaking at this frequency band.

For longer periods of data, we calculated band-limited power (BLP) for discrete frequency
bands by calculating the square of the bandpass-filtered data (zero-phase, 5-pole Butterworth
filter, MATLAB). For all analyses, BLP in typical EEG bands <100 Hz (theta 4-8 Hz, alpha
8-12 Hz, beta 12-25 Hz, gamma 30-100 Hz) as well high frequency bands (100 Hz wide bands
>100 Hz; i.e., 100-200 Hz, 200-300 Hz, 900-1000 Hz, . . .9900-10000 Hz) were computed.
For each frequency band, we calculated the correlation coefficient between the spike waveform
attributes from all neurons and either the power in the frequency decomposition (for short seg-
ment data) or the total BLP over five minutes (for continuous data). An example of the result-
ing scatterplots for 300-400 Hz is shown for visualization purposes in Fig 1. Subsequently, the
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resultant r-value for each frequency band is plotted as a function of the logarithm of frequency.
Statistical tests for all correlations were carried out by transforming the correlation value r to a
t-statistic with N number of samples and N-2 degrees of freedom: t = r(y/(N —2)//(1 — 7).

Detecting spikes with high frequency power

To evaluate the ability of high frequency activity to detect spike timing, we first calculated the
z-score of the BLP in each frequency band. For each spike, the mean BLP during the period of
spiking (+/- 1ms) was calculated. If the mean BLP exceeded 2 SD during this time, it was con-
sidered a detection event (true positive). For all time periods not including a spike, if the BLP
was below threshold it was considered a true negative. The sensitivity (true positive rate) and
specificity (true negative rate) of BLP to detect spiking were then calculated. Varying the BLP
threshold did not significantly alter the sensitivity or specificity results. This analysis was per-
formed for each spike. Sensitivity and specificity were plotted as a function of frequency for all
neurons.

Single spike classifier

To determine the accuracy of high frequency activity in detecting and classifying spikes, we
implemented a support vector machine (SVM) via the SVM train-and-classify routines in
MATLAB [28, 29]. Briefly, an SVM finds a hyperplane that separates all data points into two
classes with the largest margin. The margin refers to the maximal distance orthogonal to the
hyperplane containing no data points. Support vectors refer to data points closest the separat-
ing hyperplane. Thus, for a set of training data consisting of data points x; and their groups y;
(in this case MSNs or FSIs), a hyperplane can be defined as:

<w,x>+b=0

Where w £ R and <w,x> is the dot product of w and x. In this context, the best hyperplane
is defined as:

yi(<w,x,>+b)>1
and support vectors are those xi on the boundary:

yi(<w,x,>+b)=1

After the best hyperplane is defined, the class that a vector z belongs to can be represented
by:
class(z) = sign(<w,z>) + b.

First, multiunit power (>300 Hz) measurements that exceeded 1 SD were extracted (+/-25
ms) and a frequency transformation was performed for each data segment and normalized to
the area under the curve. Next, for each data segment, power in the lower (500-600Hz) and the
higher (3000-3500Hz) bands were computed and used as features in a binary classifier. These
frequency bands were chosen as they exhibited the largest power separation between MSNs
and FSIs (Fig 3B). For all analysis, the classifier was trained on 25% of cells selected at random,
while classification was performed on the remaining 75% of cells. Finally, the accuracy of neu-
rons in the classification dataset was calculated for each cell based on single trial data. For each
neuron, misses (times of no BLP increase during known spiking) were incorporated into accu-
racy measurements.
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Modeling multiunit activity

As it is unclear how different neuronal populations contribute to activity in the multiunit fre-
quency range, we modeled a dorsal striatum population with known spiking parameters to
examine how changes in population firing rates affect multiunit activity. 20,000 cells were used
in this simulation, with a distribution of 95: 5% MSNs: FSIs. This distribution represents the
actual distribution of these two neuronal populations in the striatum [30]. For each cell, we cre-
ated a set of Poisson distributed time points in order to model the spiking of a neuron. In these
simulations, this distribution was used to model spike timing, while the average action potential
waveform of spikes recorded experimentally were inserted in the time series in order to per-
form frequency analysis on the dataset, as is described below. Mean and standard deviation of
MOSN and FSI spiking in the model was constrained to match those in the experimental dataset
(2.4Hz +/- 3.6 SD for MSNs; 16.1Hz +/- 10.2 SD for FSIs). To model the effect of activation or
suppression of a specific subset of neurons, we modulated the firing rate of none, one, or both
of the subtype populations. The spike timing distribution for each cell was convolved with a 0.5
Hz sine wave to modulate the proportion of spiking cells. Time periods of modulation of spe-
cific subtypes can be found in Fig 5A. The timing of the conditions were as follows: spontane-
ous firing (no modulation; 0-10 s); MSN modulation (10-20 s), FSI modulation (20-30 s),
modulation of MSN's and FSIs such that changes are negatively correlated (30-40 s), and mod-
ulation of MSNs and FSIs such that changes are simultaneous and positively correlated (40-50
s). Simulations were run such that during time periods of neuronal modulation, 0, 20, 40, 60,
80, or 100% of the neurons in that population were responsive to the sinusoidal input.

The raster plot for a subset of MSNs and FSIs as well as the binned population firing of all
cells are displayed in Fig 5B. For each of the 20,000 neurons, a spike waveform was selected at
random from the recorded dataset depending on the subtype. This spike waveform was
inserted into the simulated data each time that spike fired. This procedure was repeated for all
neurons in the simulation. Non-neuronal noise was incorporated into the simulation by utiliz-
ing 50 s of data from recordings from a dead mouse (recorded following the administration of
10% isoflurane for 10 minutes). Noise levels in the simulation were adjusted to match the ratio
from pre-death to post-death wideband activity in the experimental recording. The majority of
this noise consisted of 60 Hz and did not significantly affect accuracy measurements. Finally,
spike waveform data from each neuron was summed to calculate the MSN and FSI contribu-
tion to high frequency activity and noise was added as described below. Simulations were
repeated five times and averaged to account for possible variations between runs.

Analysis of simulated MUA

To compare spiking activity to activity in each frequency band, data was band-passed (5-pole,
Butterworth zero-phase filter, MATLAB) and squared to compute the band-limited power. To
determine the degree to which different frequencies ‘track’ population firing rate changes in
specific cell types, a Pearson’s correlation coefficient was computed between the BLP of the
frequency of interest and the population firing during time periods of each 10 s modulation
condition.

Then, a classifier was implemented in order to calculate the accuracy of BLP to detect and
track population ensembles. Instantaneous firing rates for both cell types were calculated for
each 10 ms time bin for the duration of the simulation. The mean BLP in each 10 ms time bin
for lower frequencies within the MUA range (0.3-2 kHz, termed low MUA’) and higher fre-
quencies (8-10 kHz, ‘high MUA’) were calculated. These frequency bands were chosen as they
demonstrated clear differences in their ability to track the different populations (Fig 6C). For
each time point where the sine wave input deviated from resting values (0-10 s), we categorized
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BLP changes in both frequency bands as exhibiting no difference or deviating from baseline
changes as determined by >2 SD from resting time periods. Finally, for each time point,
changes in low and high MUA were compared to population firing rates of each cell type. Two
different classifiers were implemented. We first examined the ability for low and high MUA to
correctly predict both the pattern of MSN and FSI firing rates. In this analysis, an 8-way classi-
fier (eight possible changes between both populations; see Fig 7D) was used such that “chance
accuracy” was 1/8 or 12.5%. The second classifier examined the overall accuracy for low MUA
to predict MSN firing rates and high MUA to predict FSI firing rates individually. Here, when
analyzing low MUA, only data points where the MSN population firing rate deviated from
baseline were included. Importantly, data points where FSI populations were modulated simul-
taneously with MSNs were included in this classifier. In this case, a chance level of 50% accu-
racy (predicting that MSNs either increased or decreased firing rates) was implemented. The
same analysis was performed for high MUA to predict FSI activity.

Finally, we evaluate the predictability of MUA on population firing rates on a continuous
scale instead of a discrete classifier. To do so, we generated predicted firing rate traces of MSNs
from high MUA and predicted traces of FSIs from low MUA. After converting each MUA
trace to z-scores, we 1) scaled the trace by the standard deviation of the resting period (0-10 s)
and 2) shifted the trace by the mean firing rate of this time period. Next, we computed the per-
cent error from the predicted and actual firing rate traces at each time point for each popula-
tion. For example, the actual MSN firing rate trace was compared to the predicted MSN trace
derived from low MUA. This analysis was performed for all simulations and for each popula-
tion. Finally, surface plots (one for MSNs and low MUA and one for FSIs and high MUA) were
created to visualize the percent error from each population while varying the total population
firing rate and the percent of modulated neurons.

Supporting Information

S1 Fig. Modeling the spiking contribution to high frequency activity. A) Determining the
effect of spike width on spectral power while holding firing rate and amplitude constant. Top
panel: Examples of modulating the width of one spike. Middle panel: Relationship of width to
total power in 300-400Hz band over five minutes of recording. Bottom panel: Comparison of
spike width to all frequencies while constraining amplitude and firing rate. B-C) Determining
the effect of modulating spike B) amplitude and C) firing rate on spectral power over the five
minute recording.
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