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The cerebral cortex forms a sheet of neurons organized into a network of inter-

connected modules that is highly expanded in humans and presumably

enables our most refined sensory and cognitive abilities. The links of this net-

work form a fundamental aspect of its organization, and a great deal of

research is focusing on understanding how information flows within and

between different regions. However, an often-overlooked element of this con-

nectivity regards a causal, hierarchical structure of regions, whereby certain

nodes of the cortical network may exert greater influence over the others.

While this is difficult to ascertain non-invasively, patients undergoing invasive

electrode monitoring for epilepsy provide a unique window into this aspect of

cortical organization. In this review, we highlight the potential for cortico-

cortical evoked potential (CCEP) mapping to directly measure neuronal

propagation across large-scale brain networks with spatio-temporal resolution

that is superior to traditional neuroimaging methods. We first introduce effec-

tive connectivity and discuss the mechanisms underlying CCEP generation.

Next, we highlight how CCEP mapping has begun to provide insight into

the neural basis of non-invasive imaging signals. Finally, we present a novel

approach to perturbing and measuring brain network function during cogni-

tive processing. The direct measurement of CCEPs in response to electrical

stimulation represents a potentially powerful clinical and basic science tool

for probing the large-scale networks of the human cerebral cortex.
1. Introduction
There has been a shift in understanding of the cerebral cortex in recent years.

The older concept of a highly localized hierarchical structure that forms the

intervening steps between stimulus and response has recently given way to

the notion of a distributed network of modules with intrinsic properties that

integrate in the presence of external stimuli [1,2]. Accordingly, the intrinsic

architecture of connections forms a key component of cortical organization.

This concept has motivated analyses that enable us to delineate the large-

scale connectivity in vivo and to assess how neural activity dynamically evolves

along these structural links. The present article reviews the unique contribution

of cortico-cortical evoked potential (CCEP) research to our knowledge of

human cerebral connectivity. We begin by introducing the topic of cerebral

connectivity and the range of approaches available to measure it.

(a) Structural connectivity
Structural connectivity refers to the set of anatomical connections between neurons

in different regions [3]. Establishing a complete map of brain connections, the
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structural connectome, at a microscopic scale requires deter-

mining the anatomy of every neuron in the brain, down to

every dendrite, axon and synapse. While such a feat might be

within our reach in animal models using electron microscopy

and other invasive techniques [4,5], mapping the human struc-

tural connectome with such high resolution would be

technically and computationally challenging. At a more macro-

scopic scale, the cerebral cortex may be thought of as a set of

hierarchically organized modules, or areas, that perform differ-

ent sensory, cognitive or motor functions, each of which are

formed by large groups (approx. 108) of neurons [6]. Non-inva-

sive techniques based on magnetic resonance imaging (MRI)

have now made it possible to image and quantify white

matter tracts in the living human brain that interconnect these

modules. Specifically, diffusion tensor imaging (DTI) takes

advantage of the fact that the random microscopic motion of

water molecules is biased in the direction of connective fibre

pathways. Probabilistic maps of large-scale inter-regional

tracts can thus be generated by combining the pattern of

diffusion biases across voxels in space [7,8].

The ensemble of white matter connections—the structural
connectome—is a necessary component of a complete theory

of cortical function, as the anatomical substrate both enables

and constrains information flow and the dynamic grouping

of local neuronal populations into larger assemblies [9,10].

While synaptic terminals represent the fundamental unit of

cortico-cortical interactions, estimating these connections via

white matter origin and termination is more non-invasively

feasible, for example with DTI. Additionally, white matter

connectivity should closely mirror inter-regional synaptic

connectivity, as the majority of axonal communication occurs

across synaptic terminals. A fundamental limitation of MRI-

based tractography is that it cannot resolve the functionality

and directionality of anatomical links. Even if two areas are con-

nected with an anatomical link, it does not necessarily follow

that those links are being used—a road perhaps not travelled.

Furthermore, interareal axonal projections have a fundamental

directionality with the wave of depolarization travelling from

the cell body to the axonal terminal that cannot be assessed

by DTI. We propose that the human connectome may be a

directed network, with information not necessarily flowing

reciprocally between sites. Therefore, it is necessary to use

tools for inferring the direction of information flow.

(b) Functional connectivity
Functional connectivity is not an anatomical measure but

rather a property of neural dynamics. Two neurons (or two

brain regions) are said to be functionally connected if their

dynamics are statistically dependent on one another (e.g. if

their mean activity levels are correlated over time) [11].

Again, while it is impractical to simultaneously record from

large ensembles of identified neurons in multiple cortical

areas of the human brain, non-invasive neurophysiological

(electroencephalography (EEG) and magnetoencephalography

(MEG)) and functional neuroimaging (positron emission tom-

ography (PET) and functional MRI (fMRI)) approaches allow

the delineation of human functional connectivity at a modular

level with a resolution of a few millimetres [12,13].

(c) Effective connectivity
Effective connectivity refers to the causal influence between

brain regions [14]. In contrast to functional connectivity,
effective connectivity is a directed measure, where the influ-

ence that area A exerts upon area B is not necessarily

identical to the influence of B over A. Effective connectivity

has been described in detail, beginning with Aertsen’s work

on evoked connectivity in cat neocortex [15,16], Friston’s

work on effective connectivity in human neuroimaging

[11,14,17] recently has been applied to encompass dynamic

causal modelling, Granger causality and other model-free

approaches [18–20]. Horwitz has noted that that the term

‘effective connectivity’ is applied broadly to different compu-

tational algorithms across multiple neurophysiology and

neuroimaging modalities (PET, fMRI and EEG) with widely

variable spatial and temporal resolution, and he suggests that

the term should be used cautiously and clearly [21].

There are two distinct approaches to probe effective

connectivity: non-interventional and interventional. The

non-interventional approaches are observational and attempt

to infer causality via the analysis of simultaneous recordings

of neurons or areas, in order to quantify the directionality of

the functional connections using measures such as Granger

causality and dynamic causal modelling [18–20].

By contrast, interventional approaches involve an empiric

perturbation of activity in one set of neurons as the independent

measure and then quantify its impact, or evoked response, at

other sites as the dependent measure. Although non-interven-

tional approaches are promising, and more widely applicable

in non-invasive experimental settings, they do not directly

measure directed influence. Furthermore, their interpretation

is dependent on the validity of modelling assumptions and is

considered controversial, especially in the context of neuroima-

ging [22–24]. In this review, we will focus on the interventional

approach to measuring effective connectivity, which we will

refer to as evoked effective connectivity.
(d) Importance of information flow in the brain
In the past decade, quantitative analysis, based mostly on

graph theoretical measures [25], has revolutionized the exam-

ination of brain networks. This work is based largely on non-

directional interactions between sites—that is, lacking infor-

mation regarding the causal influence between sites. The

brain is composed of hundreds of subregions whose functional

specialization is largely determined by their incoming and out-

going connections with other cortical areas. For this reason,

directional interactions captured with measures of effective con-

nectivity can provide an important additional insight into

brain networks. If it is the case, as we suggest here, that connec-

tions are not necessarily reciprocal, then it would follow that

certain areas may be in a position of great influence, behav-

ing as projectors, while other areas may be in a position of

receiving influence, behaving as integrators.

Effective connectivity measurements have traditionally

relied on animal work, but the recent interest in stimulation-

based techniques in humans [26–28] now provides new data

to investigate the influence of directional connectivity on net-

work topology and behaviour. Non-invasive, interventional

approaches that make use of transcranial magnetic stimulation

(TMS) or transcranial direct current stimulation (tDCS) use dis-
tant (scalp EEG) or indirect (resting fMRI) measures of neural

activity [13,29–31]. By contrast, CCEP mapping directly

measures local neural activity from the surface of the brain.

In this review, we focus on the use of CCEP mapping in
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Table 1. Comparison of different stimulation techniques. The number of
plus marks represents the author’s expert opinion and is not derived from
quantitative measurement.
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answering three fundamental questions regarding complex

brain networks:

(1) What cortical physiology underlies CCEPs? (§3)

(2) To what extent do anatomical and functional connections

predict CCEP connections? (§4) and

(3) How can the directionality of brain interactions further

our understanding of complex brain networks? (§§5–7).

2. Cortico-cortical evoked potential mapping: a
directional and causal measure of connectivity

(a) A history of brain electrical stimulation
Fritsch and Hitzig, in the late nineteenth century, were the first

to establish a functional link between distant parts of the ner-

vous system. In the early twentieth century, Vogt & Vogt [32]

used cerebral stimulation to relate the function of the brain to

its architectonic structure. During the same period, Krause

[33] and Cushing [34] were among the first to perform electrical

stimulation of the human brain to elicit motor responses.

Foerster went on to not only stimulate other parts of the

human brain, but also combined it with electrocorticography

(ECoG), to record electrophysiological responses to brain

stimulation [35]. His one-time student Penfield famously went

on to perform extensive studies on the sensory, motor and cog-

nitive effects of intraoperative brain stimulation in humans

[36,37]. Purpura et al. [38] used microstimulation of the human

cortex to investigate its neurophysiological properties. In exper-

imental animals, Newsome and co-workers [39] were among

the first to demonstrate how microstimulation of a specific cor-

tical area could influence perceptual judgement. Recently,

optogenetics have allowed the selective stimulation of neuronal

subtypes in localized regions of animal brains [40] and assessing

the effects of that stimulation on functional neural networks

[41]. With the increasing use of research protocols to study

effects of cortical stimulation in patients implanted with inva-

sive electrodes for epilepsy monitoring, there has been recent

resurgence of interest into the effects of cortical stimulation

upon behaviour and perception [26,42–44].

While most of the aforementioned work focused on the

link between stimulation and changes in perception or behav-

iour (e.g. stimulating the post-central gyrus to establish that it

participates in somatic sensation), other techniques including

TMS, tDCS and CCEP mapping have been used to measure

the inter-regional influence of local stimulation (i.e. effective

connectivity). The major advantage of mapping human brain

connectivity via stimulation is the ability to assess directedness

of cerebral connections in vivo, which is not possible using

MRI-based tract tracing nor functional MRI-based covaria-

tion methods. TMS uses a time-varying magnetic field that

propagates through the skull to non-invasively induce changes

in suprathreshold neuronal spiking in the cerebral cortex

[31,45]. On the other hand, tDCS applies an electrical current

between two electrodes placed on the scalp to introduce sub-

threshold changes in neural activity [46–48]. Combined with

scalp EEG or functional MRI, TMS and tDCS have the ability

to sample distributed networks with high spatio-temporal res-

olution in humans. However, the spatial extent of neuronal

modulation from the external magnetic field (for TMS) and

electric field (for tDCS) is unclear, and experimental control

of the precise location of the stimulus is more limited than

when electrodes are lying directly on the brain’s surface [49].
Matsumoto et al. [50] introduced the ‘CCEP’ terminology

when they measured, using invasive subdural electrodes, the

electrophysiological responses of cortical areas to direct elec-

trical stimulation at another site. The electrodes in CCEP

studies are implanted for clinical reasons, when patients

with intractable epilepsy undergo evaluation for potential

resection of seizure focus regions. CCEP mapping has excel-

lent spatio-temporal resolution, accurate localization of the

stimulated region and can sample activity across distributed

networks. A disadvantage to this approach is the lack of abil-

ity to examine effective connectivity in individuals without

cortical pathology. Additionally, spatial sampling is restric-

ted by the limited number of intracranial electrodes placed

in any single patient. Table 1 and figure 1 summarize the

characteristics of each of these interventional techniques.
(b) Overview of cortico-cortical evoked potentials
In order to gain direct access to the awake human brain, patients

with medically intractable epilepsy undergoing surgical evalu-

ation for seizure localization are recruited for research

purposes. Prior to implantation, the hemisphere and lobe gen-

erating seizures are determined by an EEG recording from the

scalp; however, electrodes placed inside the skull are necessary

for more precise localization of epileptic activity. Two different

techniques are performed for intracranial electrode monitoring.

The grid and strip approach involves a craniotomy and durot-

omy followed by the placement of two-dimensional strips or

sheets (grids) of electrodes (typically 3 mm diameter, 1 cm

inter-electrode spacing), where neural activity can be recorded

from the surface of the cortex (termed electrocorticography, or

ECoG [53–57]). On the other hand, stereoelectroencephalography
(SEEG) involves the placement of multi-contact electrode

leads penetrating the brain [58–60]. While in this review we

focus on the grids and strips approach, the principles discussed

may be applied to both techniques.

Following the implantation of subdural surface electrodes,

neural activity is recorded until enough seizures are observed

for clinical purposes and electrical stimulation mapping can

subsequently be performed to define functional areas. CCEP

mapping is performed typically after seizures have been cap-

tured and antiepileptic medications have been resumed.

CCEP mapping begins with the injection of current (1–10 mA

http://rstb.royalsocietypublishing.org/
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for 100–500 ms) between a pair of adjacent electrodes. The

extraparenchymal location and wider surface area of the

stimulating electrodes using grids and strips results in grea-

ter resistance and lower charge density than SEEG.

Consequently, brief stimulation of up to 10 mA is commo-

nly tolerated without resulting in unwanted epileptiform

afterdischarges using grids and strips. The stimulation triggers

a local electrical response at the area of stimulation as well as

at adjacent or remote locations in proportion to the strength of

the effective connection between the two locations. This pro-

cedure is repeated 10–50 times for signal averaging of the

evoked response. CCEPs typically consist of an early

(10–30 ms) negative surface deflection termed the N1 and a

later (80–250 ms) slow wave termed the N2 (figure 2a)

[50,52,61–63]. Considerable waveform heterogeneity of the

N1 and N2 components of the CCEP exists across spatially
diverse recording sites following stimulation (figure 2b). In

this manner, the stimulation-evoked response (i.e. the CCEP)

provides a measure of directional connectivity that is sampled

directly from the cortical surface.

(c) Cortico-cortical evoked potential mapping
of brain networks

Lüders and colleagues were one of the first groups to

employ CCEP mapping to investigate the connectivity within

functional networks, specifically motor and language regions

[50,63]. One advantage of CCEP mapping is the examination of

the reciprocity between regions—that is, how often stimulation

of site A evokes a CCEP at site B, when stimulation of site B

evokes a CCEP at site A. Within the motor cortex, CCEPs were

observed frequently, with 75% of site pairs exhibiting reciprocal

http://rstb.royalsocietypublishing.org/
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CCEPs [63]. In another study, CCEP mapping of the language

system demonstrated that stimulation of Broca’s area but not

adjacent regions coding for face movement elicited strong

CCEPs in posterior temporal language regions. Moreover, the

majority of CCEP responses within the language system were

bidirectional [50]. The authors concluded that bidirectional

connections observed between anterior and posterior temporal

regions argue against the commonly accepted Wernicke–

Geschwind model of language, in which word comprehension

in Wernicke’s area is transmitted to Broca’s area to produce

speech in a unidirectional fashion [64]. In a CCEP study character-

izing the connections between frontal and temporal lobes, a high

incidence of intralobar connections was observed. By contrast, an

asymmetry between interlobar connections was observed with

frequent frontal-to-temporal and rare temporal-to-frontal connec-

tions [65]. CCEP mapping studies have since examined the

fronto-parietal network [66], hippocampus [67] and language

[60] networks. In summary, CCEP mapping has begun to

reveal directional connectivity both within and between human

functional networks, which is difficult with non-invasive studies.
0528
3. Electro-mechanistic basis of cortico-cortical
evoked potentials

CCEP mapping can reliably localize functionally related

brain regions using direct electrophysiological stimulation and

recordings. However, uncertainty concerning the neural mech-

anisms underlying the response to stimulation reduces the

neurobiological insight provided by CCEP mapping [68]. Here,

we consider the likely mechanisms for the generation of

evoked potentials during bipolar, biphasic stimulation, which

is our preferred mapping method. Stimulation is biphasic

when current injection in each anode–cathode electrode pair is

followed by a second current injection of equal strength with

the anode and cathode electrodes switched. Biphasic stimulation

balances the charge, both at the electrode tip (to avoid deposition

of ions) and also in the underlying tissue (which may be more

sensitive to one polarity). As opposed to unipolar stimulation

where the stimulation is performed between an area of interest

and a distant site that may be extracranial or at a site far from

the area of interest, bipolar stimulation, where injected current

runs between two adjacent electrodes, should delivera more con-

sistent stimulation configuration by providing a focus of return

current. In addition, computational modelling suggests that

bipolar stimulation affects a more local region of cortex than

monopolar stimulation [69], thereby minimizing the spatial

spread of stimulation and increasing the spatial resolution.

(a) Propagation pathways of neural activity during
cortico-cortical evoked potential mapping

The CCEP involves two processes: (i) the physiological change

induced at the site of stimulation and (ii) the response recorded

at the site of projection. Given that pyramidal cells give rise to

the major output of the cortex, we focus our discussion on

stimulation-induced changes in these neurons. Current

injected onto the surface of the neocortex can affect local pyra-

midal cells through several pathways. First, there is direct

depolarization of the superficial dendritic trees of pyramidal

cells in cortical layers 2, 3, 5 and 6, which increases the likeli-

hood of raising the membrane potential above the threshold

needed to generate an action potential in these neurons.
Second, injected current will depolarize layer 2/3 inhibitory

interneurons that synapse near the soma on adjacent pyrami-

dal cells [70], leading to an indirect decrease in pyramidal

cell firing through the activation of GABAergic synapses.

Third, injected current will depolarize long-range axons traver-

sing the region of stimulation, generating action potentials

propagating orthodromically (to local and distant pyramidal

synapses) as well as antidromically (backpropagating to

depolarize the pyramidal cell soma and possibly dendrites

[71,72]). These pathways are schematized in figure 3a.

Although there are several possible pathways for the

propagation of cortical stimulation, animal studies provide

some insight into those that are most likely. Specifically, studies

in cat neocortex rarely observed antidromic activation follow-

ing direct cortical stimulation [74]. Moreover, the majority of

responses to direct cortical stimulation propagated from super-

ficial lamina to deep lamina [74]. These studies suggest that

CCEP generation primarily involves the activation of middle

and deep pyramidal cells. Local responses in middle and

deep pyramidal cells will then propagate down its axon to

mono- and poly-synaptically connected regions via cortico-

cortical and cortico-subcortical projections [75]. In summary,

it is likely that responses to single pulse stimulation in

humans reflect both a major pyramidal cell contribution via

orthodromic cortico-cortical and cortico-subcortical-cortical

projections as well as a minor antidromic contribution [63].

Next, we focus upon the responses elicited at the sites of

projection. Owing to their shape and uniform orientation in

cortex, pyramidal cells are also the dominant generators of

field potentials at the recording site [76]. Laminar current

source density analysis of cortical responses produced by

brief, transient (less than 1 ms) sensory stimulation shows the

earliest sensory responses as depolarization in the middle lami-

nae (3 and 4) and manifest as a surface negativity that is of short

duration (10–30 ms) and 10–40 Hz in frequency [77,78]. This is

followed by complex patterns of excitatory and inhibitory post-

synaptic potentials across all cortical laminae of longer

duration and lower frequency (1–4 Hz). The N1 of the CCEP

bears great similarity to the early excitatory cortical response

resultant from feed-forward input, whereas the later N2 is

reminiscent of the later response [62]. It is likely that both

locally driven oscillations with sequences of excitation and

inhibition as well as recurrent relay volleys contribute to this

prolonged response to even the briefest of stimulation [78–80].

Finally, we consider the termination of the propagation in

light of evidence that shows stimulation to be limited in terms

of levels of the modular, hierarchical structure of cortex. Com-

bined fMRI/electrophysiology studies in monkeys showed

microstimulation in the lateral geniculate nucleus to produce

increased blood-oxygen-level-dependent (BOLD) signal that

is limited to V1 and not extend to extrastriate cortex [81]. The

fact that this effect is abolished by GABAergic antagonists

implies that inhibition in the area generating the CCEP, in

turn, limits propagation of the effects of cortical stimulation.
4. Relationship between anatomical, functional
and effective connectivity

Non-invasive neuroimaging techniques are currently limited by

their indirect measurement of neuronal activity. CCEP map-

ping, on the other hand, measures electrical activity directly

from the cortical surface. In this manner, CCEP mapping can

http://rstb.royalsocietypublishing.org/


Box 1. Information. The Neural Basis of CCEP Generation.

While there may be variable degrees of latency to activity after epicortical stimulation [82], it is likely that single pulse stimu-

lation of up to 10 mA results in activation within 2–4 ms [83]. The latency of peaks in the CCEP suggests an oligo- or

polysynaptic propagation pathway for both the N1 and N2 components. If a similar conduction velocity is assumed

(3–80 m s21 for primate myelinated pyramidal tract neurons [84,85]) while accounting for differences in cortical volume

between primates and humans, a 4–8 ms delay from stimulation to the observation of monosynaptic connections at the

remote response site is expected. However, for most clinical recording systems, current injection saturates the amplifier

for 5–10 ms, causing monosynaptic responses to be missed. Instead, given the temporal delay across synapses (2–3 ms),

it is likely that the 10–30 ms N1 response is generated from the electrical propagation across multiple synapses.

Early studies of the effects of epicortical stimulation upon single neuronal firing showed an early excitatory response occur-

ring in the time frame of the N1 followed by a longer lasting, slower inhibition that occurred in the N2 time frame [62]. The early

N1 response of the CCEP is accompanied by a burst of action potentials at the remote site [86]. Moreover, data from laminar

multi-contact recordings in humans from our group demonstrate that single pulse stimulation elicits an increase in multi-unit

activity in deep (layer IV–VI) cortical layers (figure 3c), suggesting pyramidal activation during the early N1 response. While

the method of propagation to target pyramidal cells is still unknown (as discussed above), accumulating evidence suggests that

the N1 represents an excitatory event comprising depolarization of pyramidal cells in deep cortical layers.

By contrast, the N2 slow wave is accompanied by a suppression of action potentials at the remote site [86]. Laminar

recordings corroborate the single unit findings by demonstrating a decrease in multi-unit activity (figure 3c) in layers

III–V. These multi-unit findings are similar to those seen in the laminar profile of slow-wave-sleep and evoked and spon-

taneous K-complexes [49,50]. The significant decrease in multi-unit activity was associated with current sources in layers

III–V and also with significant decreases in spectral power. The decrease in synaptic activity together with current outflow

from the neuronal elements (source) suggests the role of non-synaptic regulations, such as disfacilitation (regulated by ion

channels) [87]. This profile of decreased deep multi-unit activity and current sources in middle-to-deep layers mimics

slow-wave-sleep [88] and K-complexes [89] and suggests that the N2 slow wave of the CCEP represents prolonged inhibition.

In summary, single and multi-unit data support the interpretation of the N1 of the CCEP to represent excitation of pyramidal

cells, while the N2 represents long-lasting inhibition.
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provide a neuronal basis of neuroimaging signals that are used

widely to study brain connectivity and function. For example,

the N1 of the CCEP partially reflects both structural [61] and

functional [52] connections between cortical regions, whereas

the N2 partially reflects functional connections [52].

The N1 potential occurs between 10 and 30 ms and is

thought to reflect excitation of local cortex ([62]; see Information

in Box 1). If the N1 of the CCEP reflects neuronal activity from

direct axonal projections, then it should predict the existence of

underlying structural connections measured with DTI. The

number of tracts between two regions was shown to positively

correlate with the strength of the N1 response and negatively

with the latency of the N1 response [61], supporting the

notion that the N1 at least partially reflects the strength of ana-

tomical connectivity between two regions (figure 2c).

CCEP mapping has also been compared to resting fMRI, a

measure of functional connectivity that quantifies the temporal

coherence of the BOLD signal across cortical regions in the

absence of sensory stimuli. Although resting fMRI measures

ultraslow (less than 0.1 Hz) fluctuations of the BOLD signal,

we hypothesized that fast electrically propagated potentials eli-

cited with CCEP mapping would propagate in a similar

manner to slow changes in neural activity that can be indexed

by the BOLD signal. Brain regions with temporally correlated

BOLD fluctuations also exhibited larger CCEP amplitude

during the N1 and N2 time periods (figure 2d ). These findings,

which were replicated across patients and functional networks,

suggest that temporal correlations of slow, spontaneous hae-

modynamics reflect similar functional interactions to those

arising from fast electrically propagated activity [52].

Matsui et al. [90] examined this question in non-human pri-

mates, where electrode placement does not depend on clinical

considerations. Consistent with previous work in humans com-

paring effective and functional connectivity as described above

[52], stimulation-induced fMRI (a measure of effective connec-

tivity) in the somatosensory cortex of non-human primates

revealed strong intra-hemispheric correspondence with resting

fMRI interactions (functional connectivity). By contrast,

poor correspondence between effective and functional connec-

tivity was observed for inter-hemispheric connections—that

is, regions exhibiting strong inter-hemispheric resting func-

tional connectivity in somatosensory cortex did not exhibit

strong effective connectivity [90]. The authors posited that

inter-hemispheric interactions may partially result from net-

work-level synchronization not captured with some forms of

stimulation-based effective connectivity measures. In support

of this notion, while complete resection of the corpus callosum

caused a significant reduction in inter-hemispheric functional

connectivity in both humans [91] and non-human primates

[92], inter-hemispheric functional connectivity persisted if the

anterior commissure was left intact. These data suggest that

inter-hemispheric functional connectivity reflects indirect

processes rather than monosynaptic connections [92].

In summary, CCEP mapping provides a direct measure

of local electrical activity to which non-invasive, indirect

measurements can be compared and aid in their interpretation.

Effective, anatomical and functional connectivity within the

same subjects will provide insight into the relationships of

these techniques to the underlying neural circuitry. Performing

these studies across brain networks will be critical to determine

the extent to which inter-modality correspondence depends on

(i) the electrode orientation relative to underlying cortex and (ii)

local cytoarchitecture and density of white matter tracts.
5. Cortico-cortical evoked potential mapping
with network measures

(a) Overview
Mapping the direction of flow of neural activity during specific

cognitive processes provides novel insight into the architecture

underlying information processing in the brain. As previously

noted, CCEP mapping can assess the direction of information

flow perturbing electrical activity at one site and measure the

cortical response at another site. In the following sections, we

summarize recent work in our laboratory combining CCEP

mapping with graph theoretical methods to investigate the

direction of information flow and the causal influence of

brain regions on specific cognitive processes.
(b) Directed graph measures
Several graph theoretical measures describe the directional

flow of information in the brain [25]. This terminology

includes: outdegree—the total number of connections project-

ing outward from a node, indegree—the total number of

connections projecting inward to a node, and net flow—the

direction of information flow at one node calculated as outde-

gree minus indegree. In the context of CCEP mapping, we

refer to outdegree of a region representing the number of sig-

nificant CCEPs elicited following stimulation of the site of

interest, while the indegree of a region will refer to the total

number of significant CCEPs elicited at the site of interest

upon stimulation of all other sites. These terms are schema-

tized in figure 4a. CCEP mapping results are first

transformed into connectivity matrices, such that each row

contains the CCEP amplitude at each recording site following

the stimulation of one region (figure 4b). Next, outdegree,

indegree and net flow at each site are computed from the con-

nectivity matrices. In a representative patient, the pre-central

and post-central gyrus exhibit strong outdegree, whereas lat-

eral temporal regions demonstrate strong indegree (figure

4d ). Group analysis suggests that regions in the lateral prefron-

tal and superior parietal—regions implicated in the default

mode network [93,94]—demonstrate strong indegree with net
inward flow, whereas the pre-central, post-central and

posterior temporal regions demonstrate strong outdegree
with net outward flow. Moreover, regions involved in motor

or language function—defined clinically by behavioural

disruption elicited by high-frequency stimulation at specific

electrodes—demonstrated strong outdegree with net outward
flow [95,96].

These results provide evidence of consistent directional infor-

mation flow between regions of the neocortex. Importantly,

network measures such as centrality or modularity will be

quite different when based on directed and undirected connec-

tivity graphs. In the future, these findings could be compared

with non-interventional (fMRI and MEG) and interventional

(ECoG) measures of directionality including Granger or Bayesian

methods [97,98]. Although the interpretation of these techniques

is controversial when applied to functional neuroimaging data

with poor temporal resolution such as fMRI [24] millisecond-res-

olution electrophysiological methods such as EEG, MEG and

ECoG may be used with similar analyses. Additionally, it will

be important to study the effect of cognitive state (e.g. rest,

task) on the properties of these directed CCEP networks.
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(c) Reciprocity
The overall extent to which connections are reciprocal

suggests whether information flows in a more linear, uni-

directional fashion or by bidirectional means. One might

hypothesize that specific reciprocal connections are sites of

important functional interaction, which may be reflected in

stronger functional connectivity (i.e. dynamical correlation)

between regions. Furthermore, human brain networks exhibit

small world properties, defined by abundant local connections

and sparse long-range connections [99,100]. These small

world networks reflect the opposing demands from local

and global processing by minimizing the number of path-

ways between any two regions [100,101]. Reciprocity for

each cortical region can be calculated as the probability that

stimulation of site B will elicit a significant response at A

when stimulation of site A elicits a significant response at site

B. Our analyses quantifying reciprocity across all regions

sampled suggest that reciprocity across all networks evaluated

is low (approx. 30% for short-range connections and approx.

10% for long-range connections) and the proportion of recipro-

cal connections in the brain decreases as separation distance

increases. By comparing our data against a null model, we

determined that the level of reciprocity in experimental data

was higher than expected for short-range connections but no

different than chance for long-range connections [95].

These results are consistent with the notion of small world-

ness, with tight interconnected local networks and sparse

long-range pathways observed in networks derived from

CCEPs. Previous studies reporting higher functional reciprocity

(25–50%) [50,63] examined the degree of reciprocal CCEP con-

nections within a single sensory or functional system; thus, it is

expected that reciprocity would decrease when examining con-

nectivity across distributed networks. Examination of structural

connectivity in the visual system exhibits a similar proportion of

reciprocal connections as observed with CCEP mapping [6].

Taken together, these findings suggest that nodes within a net-

work may be reciprocal, but that networks as a whole may not

be. Although clear evidence exists for non-reciprocal links in the

connectome of non-human primates [102,103], evidence in

humans is more scarce. The demonstration that evoked effective
connections in the human brain are largely non-reciprocal

strengthens the notion that the human connectome is

substantially a directed network.

(d) Influence of reciprocal cortico-cortical interactions
on functional connectivity

Previous reports demonstrate a spatial correspondence

between effective connectivity (measured by CCEP mapping)

and functional connectivity (measured by resting fMRI)

[52,90]. Recently, we examined the relationship between

reciprocity of CCEPs connections and the strength of functional

connectivity measured with ECoG in the resting state. Here,

functional connectivity was quantified by the temporal corre-

lation of low-frequency (0.1–1 Hz) fluctuations of power

within the high gamma (70–150 Hz) band, which, in turn, is

thought to reflect aggregate spiking activity [104–106].

Regions exhibiting bidirectional CCEPs exhibited 40% stron-

ger resting functional connectivity than those exhibiting

unidirectional or no significant CCEP [95]. These data sup-

port the notion that the degree of reciprocal cortico-cortical

connections predicts underlying functional connectivity.
6. Limitations of cortico-cortical evoked potential
mapping

CCEP mapping represents a powerful tool to measure both

directionality and causality in cortical networks in the awake

human brain. However, several limitations hinder its potential

mainstream use in intracranial recordings. First, injecting a

large current across a pair of electrodes produces a stimulation

artefact that lasts 5–10 ms and can mask potential mono- or

disynaptic connections, which would provide important sig-

nificant insight into brain connectivity. Methods are currently

underway to remove the stimulation artefact (via simple sub-

traction or modelling amplifier ringing) in order to unmask

neural processes that may exist during these time periods

[107,108]. Lower amplitude, continuous stimulation may pro-

vide an alternative means to study effective connectivity by

http://rstb.royalsocietypublishing.org/
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examining stimulation that is less likely to produce an artefact

and be more in line with natural physiological phenomena.

Second, the nature of the CCEP is quite complex and the cellu-

lar and circuit-level mechanisms generating the evoked

potential at each time frame (N1 and N2) are not yet fully

characterized. A better understanding of the relationship

between the orientation of the cortical column under the sur-

face electrode and the latency, polarity and strength of

evoked potentials would be valuable.

Another important caveat to CCEP mapping is the

unknown degree to which CCEPs reflect the strength and

number of orthodromically propagating action potentials.

Cortical responses to distant stimulation are not likely to be

due to volume conduction because of the variability in

timing and strength of response at regions equidistant from

the stimulation site. However, as addressed previously, it is

not well known if CCEPs result from (i) excitation of pyrami-

dal cells propagating orthodromically to the recording site or

from (ii) orthodromic or antidromic activation of axons

underlying the stimulation site. Additionally, the variability

of stimulation parameters during CCEP mapping hinders

the ability to critically evaluate work across study centres.

Specifically, parameters that are not consistent include elec-

trode type (SEEG versus subdural), electrode stimulation

configuration (monopolar and bipolar), current amplitude

(from 1 to 10 mA), pulse duration (100–500 ms), inter-

stimulation interval (0.5–10 s) and number of stimulation

repetitions (10–50). Furthermore, the patient’s cognitive

state during CCEP mapping is difficult to control. Indeed,

we have observed that CCEP amplitude can be modulated

by antiepileptic medication, anaesthesia and sleep. Other par-

ameters essential to the interpretation of CCEP results

include the relationship of components of the CCEP to

cortical orientation, architecture and signal processing.

Finally, a common criticism of this work is the generalization

of findings from patients with intractable epilepsy to normal

brain networks and cognitive function. Although a valid and

significant concern, several reasons argue for the generalization

of findings in these patients. First, this patient population is typi-

cally highly heterogeneous with respect to age, gender, seizure

onset and disease aetiology. Therefore, consistent electrophysio-

logical results across subjects suggest that the patient’s disease

and subject-to-subject variability inherent in invasive ECoG is

not likely to have a significant effect on these findings.

Second, electrodes involved in seizure generation and spread

are removed prior to all analysis so that the results are based

on findings from ‘non-pathological’ brain regions. Consistent

results across patients suggest that findings are not likely to

be due to the pathophysiology of the patient’s disease and

that results may be applied to the general population.
7. The future of cortico-cortical evoked potentials
and network mapping

(a) Task-related reorganization of large-scale networks
through cortico-cortical evoked potential mapping:
a novel method to probe complex brain networks

Modulating neural activity with electrical stimulation during

cognitive tasks provides a means to investigate the causal

role of specific brain regions in cognitive processes underlying
behaviour. To date, studies have examined either the behav-

ioural or electrophysiological consequences of electrical

stimulation of intracranial electrodes in the cerebral cortex.

There is a rich history of this [35,109], and more recent observa-

tions include: (i) high-frequency stimulation of the entorhinal

cortex improving spatial memory [27], (ii) experiential

phenomena occuring only when electrical stimulation of

visual cortex is associated with activity in the temporo-parietal

junction [26], (iii) electrical stimulation of the anterior cingulate

cortex eliciting the will to persevere [44] and (iv) stimulation to

the right inferior frontal cortex inducing more slowing when

motor braking was required in a go-no-go task [28,42]. Other

studies examined the electrophysiological effects of electrical

stimulation during rest, thus without assessing behaviour [52].

The consequences of stimulation can be examined from

an electrophysiological standpoint, and ECoG allows us to

measure both single site and network-level changes. Specifi-

cally, the amplitude and latency of CCEPs can be

quantified at each site with and without the presentation of

sensory stimuli. In the example shown in figure 5a, single cur-

rent pulses were delivered to the fusiform face area (FFA,

which responds selectively to faces [110]) together with the

presentation of a face image. A strong decrease in CCEP

amplitude was observed during the N2 but not the N1 time

period. This finding suggests that the N2 component of the

CCEP may be more sensitive to high-level cognitive processes

compared with the N1, which may be more automatic. Fur-

thermore, stimulation of the FFA during face presentation

resulted in an increased reaction time, whereas stimulation

of the adjacent parahippocampal place area (PPA, which is

selective for visual scenes rather than faces or objects [111])

during the presentation of face images did not change the

CCEP amplitude or reaction time (figure 5b).

At a network level, graph theory applied to CCEP mapping

allows the quantification of brain network topology during

different cognitive conditions. To characterize these network

changes, the CCEP response, similar to that in figure 5a, is com-

puted for all cortical regions sampled. While graph theory

measures are not necessary to analyse the CCEP response at

one region or small subnetworks, large-scale network analysis

(more than 100 electrodes) would require graph theoretic

metrics to quantify network changes. For example, network

topology (indegree, outdegree, centrality and net flow) can

be quantified at rest, during sensory stimuli and during electri-

cal stimulation of specific subnetworks. Comparing the large-

scale network structure of the brain during these conditions

can yield important information regarding local and global

network reorganization following the activation and dis-

ruption of specific cortical regions. In summary, task-based

CCEPs are able to quantify the behavioural and electrophysio-

logical effect of specific sensory stimuli on multiple cortical

circuits in the awake human brain and represent a complex

yet intriguing dimension to CCEP mapping.

(b) Cortico-cortical evoked potentials to study
seizure networks

It has become increasingly apparent that epilepsy does not

arise from a disturbance in one brain region but rather involves

a network of regions [112]. As a result, the use of traditional

methods to analyse seizure activity is now complemented by

techniques that provide a more quantitative view of brain

networks. CCEP mapping could contribute to the care of
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patients with epilepsy to provide a better resolution of both

functional and pathological networks. Understanding the

spatial propagation and temporal dynamics of seizure activity

can improve the localization of pathological activity and

provide insight into the mechanism underlying seizure propa-

gation. Additionally, because seizures occur infrequently,

clinicians welcome novel methods such as CCEP mapping to

examine pathological activity in the interictal period. Cortical

regions involved in seizure initiation are thought to exhibit

an abnormal balance between inhibition and excitation [113].

As a result, the latency, strength and directionality of CCEPs

may reflect the balance of excitation–inhibition in the source

and target sites, potentially localizing regions of epileptic

activity. CCEPs elicited in non-pathological regions consist of

complex waveforms (N1 and N2) within the first 200 ms. On

the other hand, later voltage deflections (200–1000 ms post-

stimulation) consisting of ‘spikes’ or ‘sharp waves’ appear

to localize to seizure-generating regions of the brain [114].

Moreover, a poorer surgical outcome was observed when

late afterdischarges (abnormal electrical activity persisting

beyond the duration of the electrical stimulation) were

observed in tissue that was not resected [114]. In another

study involving eight patients with intractable epilepsy,

CCEP amplitudes were larger upon stimulation of the seizure

onset zone than when control regions were stimulated [115].

However, this relationship was dependent on the type of
epilepsy (generalized or focal) and the degree of anatomical

continuity between the seizure onset zone and early seizure

spread. Supporting these findings, preliminary data from our

laboratory suggest that afterdischarges following electrical

stimulation, when present, localize to the seizure onset zone

(see also [116]). In summary, afterdischarges elicited during

CCEP mapping are indicative of pathological brain regions

and therefore may provide complementary information

regarding the localization of the seizure onset zone.

The aforementioned considerations bear great impact

upon the moral ethics regarding informed consent when

performing these studies in clinical populations. Typically,

patients are told that there is limited risk of producing a

seizure or discomfort secondary to dural stimulation. Our

experience has been that less than 1% of sites stimulated

under CCEP protocols result in any experiential phenomena

and that in no case has CCEP stimulation of a grid or strip

electrode resulted in a seizure. Patients are also typically

told that the benefits of participating in this type of research

are limited to contributing to the understanding of brain

function for society as a whole. However, in our experience

of over 50 patients undergoing CCEP mapping, we have

seen more direct benefits afforded to the patient by: (i) increa-

sed vigilance and error checking from the research team that

communicates with the clinical team; (ii) improved

localization and identification of implanted electrodes with
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respect to individual cortical and functional anatomy; and

(iii) using the rare circumstance of discomfort or phenomen-

ology during CCEP mapping to tailor the clinically indicated

higher frequency mapping protocols to avoid sites of dis-

comfort and attend to sites where either afterdischarges or

phenomenology is elicited. The possibility for CCEP map-

ping to define functional and epileptogenic zones adds one

more potential benefit to patients to outweigh the minimal

risks of participating within these research protocols.

(c) Towards an effective connectome database
CCEP mapping is limited by the relatively low number of

centres performing this technique routinely and the relatively

few patient studies performed at each individual centre. This

limitation supports a call for the development of a cross-

centre database—an effective connectome—similar to those

implemented with non-directed functional and structural

connectivity techniques [117]. As described in the preceding

section, CCEP mapping may provide clinical benefit.

This multicentre database would require a joint effort by

groups to choose a set of stimulation parameters optimal for

CCEP mapping in order to include patients across centres

within the same study. Additionally, seizure-generating

regions in each patient can be compared to similar anatomical

but non-seizure-generating regions in a large population to

serve as a control. Finally, CCEP databases based on the

grids and strips approach [50,52,60,61,63,66] can supplement

those based on the SEEG approach [67,118], and both can be

compared to other effective connectivity measures including

microstimulation and TMS.
8. Conclusion
In summary, CCEP mapping represents a feasible techni-

que requiring little additional supplementation to standard
invasive electrode implantation protocols. This would provide

greater detail as to the organization of cortical networks with

excellent spatial and temporal resolution. In this review, we

addressed three central questions to further the development

and understanding of brain networks and connectivity.

In examining the neural basis underlying generation of

the CCEP, evidence suggests that the N1 component of the

CCEP represents early excitation of pyramidal cells at the

remote site, whereas the N2 represents a long-lasting net inhi-

bition. Regarding the comparison of CCEP mapping to

established structural and functional connectivity techniques,

we conclude that the N1 of the CCEP at least partially reflects

the structural connectivity strength between regions, whereas

the N2 may be influenced by factors such as brain state and

cognitive demands. Finally, we present data regarding the

influence of the reciprocity of connections on functional con-

nectivity and outline a method of using task-based CCEPs to

modulate brain networks during specific cognitive processes.

This underused tool in basic and clinical neuroscience

represents a powerful method to provide insight into non-

invasive measures and investigates the causal involvement of

brain regions during cortical information processing.
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