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Corticocortical Evoked Potentials Reveal Projectors and
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The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing
connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and
the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways) or
functional connectivity (mapping inter-regional statistical dependencies in ongoing activity). Here we combined direct electrical stim-
ulation with recordings from the cortical surface to provide a novel insight into directed, inter-regional influence within the cerebral
cortex of awake humans. These networks of directed interaction were reproducible across strength thresholds and across subjects.
Directed network properties included (1) a decrease in the reciprocity of connections with distance; (2) major projector nodes (sources of
influence) were found in peri-Rolandic cortex and posterior, basal and polar regions of the temporal lobe; and (3) major receiver nodes
(receivers of influence) were found in anterolateral frontal, superior parietal, and superior temporal regions. Connectivity maps derived
from electrical stimulation and from resting electrocorticography (ECoG) correlations showed similar spatial distributions for the same
source node. However, higher-level network topology analysis revealed differences between electrical stimulation and ECoG that were
partially related to the reciprocity of connections. Together, these findings inform our understanding of large-scale corticocortical

influence as well as the interpretation of functional connectivity networks.
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Introduction

Methodological advances in functional magnetic resonance im-
aging (fMRI; Fox and Raichle, 2007; Biswal et al., 2010), electro-
corticography (ECoG; Kramer etal., 2010; Chuetal., 2012), MEG
(Bassett et al., 2006), and MRI-based tractography (Hagmann et
al., 2008) have renewed interest in large-scale mapping of brain
networks and their functional architecture. This has been fueled
by the analysis of high-dimensional data, with graph theoretic
tools a prominent example (Bullmore and Sporns, 2009). Within
a graph (or network) framework, brain regions are treated as
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nodes and their connections as edges between nodes. Such stud-
ies of brain networks have provided new insight into the interac-
tions that underlie cortical information processing and the
pathophysiology of neuropsychiatric disease (Bassett et al., 2008;
Buckner et al., 2009; Honey et al., 2009).

The direction of information flow is a facet of this research
that has been difficult to ascertain. This is because connectivity
measures in humans, including resting fMRI and diffusion tensor
imaging to measure functional and anatomical connectivity, re-
spectively, cannot resolve the direction of corticocortical or sub-
cortical interactions. Anatomical tracer studies can elucidate
fine-grained directional connections in experimental animals
(Felleman and Van Essen, 1991) but are more difficult in humans
(Burkhalter and Bernardo, 1989). A number of noninterven-
tional methods, such as Granger causality and dynamic causal
modeling, can demonstrate causal interactions by statistical in-
ference (Oya et al., 2007; Yan and He, 2011), but may be difficult
to confidently interpret (Smith et al., 2011).

Direct cortical stimulation provides an interventional method
to test causal relations (or “effective connections”) between brain
regions. Electrical stimulation at one location on the neocortex
can trigger an electrical response at a remote location in propor-
tion to the strength of the effective connection between the two
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Table 1. Patient characteristics

Age Implanted
Patient ID Gender (years) hemisphere Seizure localization
S1 F 22 L Left occipital
S2 M 21 R Right temporal
S3 F 36 L/R Left frontotemporal
S4 F 48 R Right MTL
S5 F 17 R Left MTL
S6 F 23 L Left MTL
S7 F 38 L Left frontal
S8 M 31 R Right MTL
S9 F 55 L Left MTL
S10 M 22 R Right MTL
S11 F 25 R Right MTL
S12 F 30 R Right F-T
S13 F 25 L Left MTL
S14 M 60 L Left MTL
S15 F 26 L Right F-T

Seizure localization and MRI findings were determined by neurologists and neuroradiologists blinded to the study.
MTL, Medial temporal lobe; F-T, Frontotemporal.

locations. These corticocortical evoked potentials (CCEPs) can
predict resting fMRI interactions (Keller et al., 2011) and exam-
ine functional (Matsumoto et al., 2004; Conner et al., 2011) and
pathological cortical networks (Valentin et al., 2005).

Pathways connecting cortical regions consist of distinct
feedforward and feedback connections within systems such as
the visual cortex with an established functional hierarchy (Fel-
leman and Van Essen, 1991). Although bidirectional anatom-
ical connections provide the potential for communication in
both directions, bidirectional communication may often be non-
symmetric. Furthermore, these communications and their direc-
tionality may be task- and state-dependent. In fact, little is known
about the large-scale reciprocity of functional connections. Map-
ping directed connections using an interventional technique can
thus provide a new insight into interpreting large-scale brain
networks.

Here, we introduce a method of deriving robust effective con-
nectivity networks with high spatiotemporal resolution. By ap-
plying graph theoretic measures, we identify motor and language
systems to be highly central and project influence, whereas supe-
rior parietal, superior temporal, and anterolateral frontal regions
receive influence. Finally, we report differences in the reciprocity
of effective connections that may account for distinct topologies
observed between functional and effective connectivity maps.
These findings provide insight into the large-scale information
processing architecture of the human cortex and deepen our un-
derstanding of networks derived from measures of functional
connectivity.

Materials and Methods

Subject selection. Fifteen subjects (11 female, aged 31.9 years; range 17—
60) with medically intractable epilepsy at the North Shore LIJ Compre-
hensive Epilepsy Centers participated. Patient characteristics are
described in Table 1. All subjects provided informed consent as moni-
tored by the local Institutional Review Board and in accordance with the
ethical standards of the Declaration of Helsinki. The decision to implant,
the electrode targets, and the duration of implantation was made entirely
on clinical grounds without reference to this investigation.

Electrode implantation and recording. Patients were implanted with
intracranial subdural grids, strips, and/or depth electrodes (Integra Life-
sciences) for 5-10 d. Monitoring occurred until sufficient data were col-
lected to identify the seizure focus, at which time the electrodes were
removed and, if appropriate, the seizure focus was resected. Continuous
intracranial video EEG monitoring was performed using standard re-
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cording systems (XLTEK EMU 128 LTM System, Natus Medical), sam-
pled at 2 KHz and bandpass filtered (0.1-1 kHz). A strip electrode
screwed into the frontal bone near the bregma was used as common
mode ground. Acquired data were notch filtered (60 Hz) and rerefer-
enced by subtracting the common average to remove non-neuronal ac-
tivity (Kanwisher et al., 1997). Electrodes involved in the seizure onset
zone, as determined by an epileptologist blinded to the study, were re-
moved from the analysis of the majority of this study, with exception in
the test for excitability (see Fig. 4).

Electrode registration. The electrode registration process has been de-
scribed previously (Keller et al., 2011). Briefly, to localize each electrode
anatomically, subdural electrodes were identified on the postimplanta-
tion CT with BioImagesuite (Duncan et al., 2004) and were coregistered
first with the postimplantation structural MRI and subsequently with the
preimplantation MRI to account for possible brain shift caused by elec-
trode implantation and surgery (Mehta and Klein, 2010). Following
coregistration, electrodes were snapped to the closest point on the recon-
structed pial surface (Dale et al., 1999) of the preimplantation MRI in
MATLAB (Dykstra et al., 2012). Intraoperative photographs were used to
corroborate this registration method based on the identification of major
anatomical features. Automated cortical parcellations were used to relate
electrode data to anatomical regions (Fischl et al., 2004).

Functional stimulation mapping. To localize eloquent cortex for clini-
cal purposes, electrical stimulation mapping (ESM) was performed ac-
cording to standard clinical protocol (bipolar stimulation, 2-5 s
duration, 3-15 mA, 100 us/phase, 20-50 Hz). Language regions were
identified when stimulation resulted in a language deficit (expressive,
receptive, naming, or reading). Motor regions were identified when stim-
ulation resulted in contraction of isolated muscle groups.

CCEPs. CCEP mapping was performed with bipolar stimulation of
each pair of adjacent electrodes with single pulses of electrical current (10
mA, biphasic, 100 ws/phase, 20 trials per electrode pair) using a Grass S12
cortical stimulator (Grass Technologies). Interstimulation interval was 1
or 2 s (5 and10 patients, respectively). Differences in interstimulation
interval had no effect on evoked potentials. The current magnitude of 10
mA was chosen, as this was the maximum current that did not induce
epileptiform discharges in areas outside of the seizure onset zone. Stim-
ulation was performed extraoperatively once seizures had been recorded
and antiepileptic medications had been resumed; this was typically 7-10
d after the electrode implantation surgery. Patients were awake and at
rest at the time of CCEP recording.

CCEPs in human cortex generally consist of an early sharp response
(10-50 ms poststimulation) and a later slow-wave (50-250 ms). These
responses have previously been referred to as N1 and N2, respectively,
due to the existence of negative voltage deflections during these time
periods (Matsumoto et al., 2004). However, as the deflections observed
during these time periods are highly variable in both polarity and latency,
and as negative deflections are often followed by positive deflections and
vice versa, we chose to examine the magnitude of the response of evoked
potentials regardless of polarity. Therefore, we refer to the early and late
responses as Al and A2 (A for absolute magnitude). In support of this
change, a previous study demonstrates a similar spatial correlation be-
tween CCEP and resting fMRI when using the N1 or P1 response (Keller
etal., 2011).

For each stimulation and response site, mean evoked potentials (from 20
repetitions) were converted to a Z-score based on the peak amplitude re-
sponse relative to the prestimulus baseline (—500 to —5 ms) for the early
(A1) and the late (A2) response. The first 10 ms following stimulation was
excluded from analysis because of stimulation artifact. Evoked potentials
that did not switch polarity following the stimulation artifact were also re-
jected as these were most often seen when the amplifier failed to return from
saturation. Responses within 1.5 cm of the stimulation site were removed to
reduce the contribution of volume conduction. We would like to emphasize
that the Z-score is calculated based on the evoked potential at each site and is
independent of responses at other sites.

To determine the threshold for significant evoked responses, receiver
operating characteristic (ROC) curves were previously generated by
comparing CCEP amplitude responses to behavioral effects during func-
tional stimulation mapping (Keller et al., 2011). A Z-score of 6 was de-
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Workflow. 4, Corticocortical evoked potentials from one stimulation site. Single trial (gray) and average (black) CCEPs are plotted foran 8 X 8 grid of electrodesimplanted on the cortical

surface. Note the large evoked responses at the top of the diagram far from the stimulation site with small responses at the center of the grid closer to the stimulation site. Clear boxes denote bad

electrode channels that were removed from analysis. B, CCEPs at each electrode are separated

into an A1 and A2 response. The A1 response is shown in the connectivity matrices and on the brain

surfaces. Significant electrode responses from one stimulation site are plotted on the pial surface for visualization with blue arrows connecting the stimulation site to response sites with significant

CCEPs. €, CCEP directed networks. Evoked responses are converted to Z-scores and represente

d by color intensity. One row corresponds to all electrode responses from one stimulation site. The

resulting weighted connectivity matrix is then thresholded and the binary matrix (all significant stimulation-evoked responses) is plotted as a directed network on the pial surface.

termined to elicit the optimal sensitivity and specificity of CCEP
responses between expressive and receptive speech regions anatomically
connected through the arcuate fasciculus, a well characterized pathway
for speech processing. Therefore, subsequent analyses of these networks
were performed at this threshold. However, other thresholds were exam-
ined to ensure that these findings were not threshold-specific. To account
for the fact that two regions are simultaneously stimulated (bipolar stim-
ulation), each pair of stimulated electrodes was treated as a single cortical
region. As aresult, when recording responses at these two regions, CCEPs
at each site were first converted to Z-scores and then averaged before
determining whether the response exceeded threshold. Following the
calculation of CCEPs for the Al and A2 responses, we compared the
spatial overlap between responses in each time period. Across all subjects,
78.8% (*6.7% SE) of significant A2 responses were accompanied by
significant Al responses, whereas 57.6% (8.3% SE) of significant Al
responses were accompanied by significant A2 responses. For all subse-
quent analyses and figures, the A1 response is used because we believe it
represents the initial afferent volley, and thus a more direct measure of
connectivity between two regions. However, it is important to note both
the overlap as well as some differences between A1 and A2 responses as
quantified above.

Although our ability to thoroughly investigate the parameter range
was limited by clinical time constraints, we obtained data from a single
subject for varying stimulation amplitudes (5, 7, and 10 mA; see Fig. 3A).
Although the precise CCEP waveform shape varied across stimulation
amplitudes, the set of statistically responsive electrodes did not. Instead,
regions that exhibited strong CCEPs at a low current simply increased in
amplitude for a stronger current (Fig. 3B; r = 0.68, p < 0.001). This
implies that our parameters provided a spatial response map that is rep-
resentative over a range of stimulation parameters.

Analysis of directed networks. Graph theoretic measures were used to
characterize network topology. To apply these graph theoretic measures,
we first converted the pattern of CCEPs into a matrix representation (Fig.
1). Each row in the matrix corresponds to one stimulation site (“node” in
the network), and each column to a site at which stimulation responses
were measured. The (i,j) entry in the matrix represents the evoked re-
sponses measured at node j upon stimulating at site i; this is the strength
of the connection between node i and node j. To ensure a connected
matrix, the corresponding rows and columns were removed for all sites
that were untested or that produced an artifactual response. As a bipolar
configuration was used to stimulate the cortex, for each pair of electrodes
that were stimulated, the average of adjacent CCEP responses was calcu-
lated to ensure that stimulated and recorded responses were spatially
consistent. The weighted, asymmetric matrix of CCEPs was then con-
verted to a binary, asymmetric matrix by thresholding based on the ROC

analysis described above and further characterized using a variety of
network measures implemented in MATLAB (MathWorks) in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). Graph theory mea-
sures used to characterize each region in the network included: outde-
gree, the total number of significant CCEPs observed when the region of
interest is stimulated; indegree, the total number of times stimulation of
any region evokes a significant CCEP at the region of interest; degree
centrality, the number of total suprathreshold evoked responses (inde-
gree + outdegree); flow, the difference between the amount of outgoing
and incoming connections (outdegree — indegree); reciprocity index
(B), the proportion of time a recurrent suprathreshold CCEP is present
when one suprathreshold CCEP is observed in either direction; path
length, the number of shortest connections (suprathreshold CCEPs)
needed to travel from one region to another (a measure of long-range
connectivity); and clustering coefficient, the proportion of a region’s
neighbors which exhibit suprathreshold CCEPs (a measure of short-
range connectivity). As the total number of connections is identical for
each stimulation site, calculation of the total number or percentage of
connections will yield equivalent results. Whole brain networks are de-
scribed by density (k), the number of connections in the matrix divided
by the total number of possible connections; and small worldness, the
extent to which a network has a higher clustering coefficient and shorter
path length when compared with a random network with an equal num-
ber of overall connections. Networks with high clustering coefficient are
thought to exhibit high local efficiency information processing, while
those with a short path length represents efficient global processing as it
takes fewer steps to travel from one node to the next. Measures derived
from CCEPs will be referred to as “causal” (causal degree, causal inde-
gree, causal outdegree, causal flow) as each edge in the matrix represents
the directional influence of one node on another (Seth et al., 2005).

Modeling reciprocity. Identifying reciprocated and nonreciprocated in-
fluence can help in identifying the channels of information flow across
the network. However, some amount of reciprocity is expected, even in a
randomly connected network, and this baseline level of reciprocity rate
depends on the network density. Therefore, to determine whether the
proportion of reciprocal effective connections differ from chance, we
constructed a model based on the empirical network density. We first
categorized stimulation-response electrode pairs according to their Eu-
clidean distance (“short-range” pairs <5.0 cm; “long-range” pairs >5.0
cm). If p represents the total number of stimulation—response pairs
which exhibits at least one suprathreshold CCEP connection, and g rep-
resents the total number of pairs made up of reciprocated bidirectional
connections, then the probability that a random connection is recipro-
cated (i.e., part of a bidirectional pair) is as follows:

B = reciprocity index = g/p.
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B = 0Oindicates that none of the significant CCEP connections are part
of a reciprocal pair and B = I represents that all significant CCEP con-
nections are part of a reciprocal pair. In this notation, p + g represents
the total number of directed edges. For each of 1000 simulations, a net-
work was populated such that p + g edges (i.e., significant connections)
were randomly assigned between the total number of nodes (i.e., stimu-
lating—recording pairs). For each stimulation site, the number of signif-
icant connections for the simulation was made equal to that of the
experimental data. Then, the reciprocity index for the model was calcu-
lated and results were compared with experimental CCEP networks for
each subject. This analysis was performed separately for short-range and
long-range connections. Additionally, to determine the effect CCEP
threshold has on reciprocity, this analysis was repeated for less and more
stringent significance thresholds (z = 2, 4, 6, 8, 10, 12, 14).

Reciprocity: regional analysis. Because performing reciprocity analysis
on individual electrodes is likely to underestimate long-range connectiv-
ity, we also used a regional-based approach. Each electrode was assigned
to nearest anatomical parcellation as described earlier (see Electrode reg-
istration; Fischl et al., 2004). A significant connection between two ana-
tomical regions was defined in the following manner. Significance
between CCEP stimulation—responses between anatomical regions was
defined as follows. Each group of CCEP stimulation—responses between
anatomical regions was averaged to create the mean CCEP regional re-
sponse. A distribution of all mean CCEP regional responses were com-
puted, and a group CCEP regional response threshold was defined as >2
SD from this distribution. In this manner, the threshold for significance
of the mean CCEP regional response was calculated to be z = 5.42. This
threshold was used to create binary regional-based connectivity matrices.
Finally, the mean reciprocity for short-range (<5 cm) and long-range
(>5 cm) anatomical regions was calculated. For the parcellation-based
analyses, the same distance criterion was used such that if the Euclidean
distance between the center of parcellations was calculated to be >5 cm,
it was defined as a long-range connection. A control analysis similar to
that used in the electrode-based analysis was computed. The resultant
electrode-based null connectivity matrix was then grouped by regions in
a similar manner as described above for the experimental data.

Resting ECoG. The resting ECoG protocol was described previously
(Keller et al., 2013). ECoG was acquired for 3—6 min while subjects were
asked to rest quietly. Interictal discharge-free periods (276.1 = 71.2s SD)
were selected for analysis. Recording sessions were conducted >2 h be-
fore or after an ictal event to avoid preictal or postictal changes that may
alter cortical connectivity, and before electrical stimulation mapping.
Channels with high amplitude noise (SD > 250 uV) as well as electrode
sites corresponding to the seizure onset zone were excluded (mean 5.6 =
3.2% of all channels). The remaining channels were notch-filtered to
remove power line noise and rereferenced by subtracting the common
average. Data were bandpass filtered between 70 and150 Hz (fourth-
order Butterworth filter with zero phase shift), full-wave rectified, and
Hilbert transformed to obtain the envelope of the signal (high gamma
power, HGP; Ossandon et al., 2011; Keller et al., 2013). Slow fluctuations
(0.1-1 Hz) of HGP were then extracted (fourth-order zero phase shift
bandpass Butterworth filter). It is important to emphasize that HGP is
used here as a proxy to analyze low-frequency fluctuations of the gamma
envelope. Although the gamma band, which provides the closest approx-
imation to neuronal firing (Mukamel et al., 2005; Manning et al., 2009) is
the direct measurement, it is the low (<1 Hz) frequency fluctuations of
the gamma band that reflect the most reproducible measures of cortical
dynamics (Nir et al., 2008; Honey et al., 2012). Finally, the correlation
coefficient of HGP fluctuations between each pair of electrodes was com-
puted, and the resulting coefficients were normalized using Fisher’s
r-to-z transformation.

Comparing effective and functional connectivity maps. CCEPs measure
the brain’s response to externally applied electrical stimulation. How-
ever, how do these interareal effective interactions compare with corre-
lation in spontaneous cortical activity? We attempted to answer this
question by recording ECoG signals while the patient is at rest (see Ma-
terials and Methods). Functional connectivity between electrodes 7 and j
was measured as the correlation coefficient of the ECoG power time
courses recorded in those electrodes at rest. The functional connectivity
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matrix was binarized by thresholding to leave only the strongest 5% of
correlations. As correlation does not provide information on direction-
ality, degree (rather than indegree, outdegree, or net flow) was calculated
for each node in the functional connectivity matrices. To compare ECoG
and CCEP profiles, for the set of electrodes in which bipolar stimulation
was applied during CCEP mapping, we averaged the ECoG measures
across these two sites.

Functional connectivity can differ from effective connectivity in the
strength of interactions between two particular sites as well as the overall
topology, or connectedness. To compare effective and functional con-
nectivity, we examined the relationship between ECoG and CCEP net-
work measures by computing the single-site and global normalized
connectivity profiles for each modality. Single-site connectivity refers to
asingle row in the connectivity matrix, and single-site correspondence of
CCEP and ECoG measures implies the spatial correspondence of these
network measures. On the other hand, global connectivity profile repre-
sents overall connectedness of a given site and reflects the total number of
observed connections regardless of their spatial correspondence.

The correspondence between modalities of single-site connectivity
profiles was assessed by calculating the spatial correlation between the
connectivity of each ROI (seed electrode for ECoG calculations; stimu-
lation electrode for CCEPs) and all other electrodes (ECoG correlation
with seed electrode, evoked response for CCEPs). These correlation val-
ues were then averaged across all ROIs and across subjects. To compare
the global connectivity profiles across modalities, we used a group
surface-based analysis. For each patient, the z-normalized network mea-
sure was plotted after convolution with a 3D Gaussian smoothing kernel
(FWHM 50 mm; Miller et al., 2007; Dykstra et al., 2012). Smoothed
network measure maps for each subject were then transformed to the
group-averaged cortical surface. Group surface maps of ECoG degree
and CCEP degree, indegree, outdegree, and net flow were then com-
pared. As a further analysis, for each cortical parcellation, graph theory
measures at electrodes found within a region were averaged together and
the correlation coefficient was calculated for each parcellation-based
ECoG and CCEP network measure. To determine whether these ECoG
findings were specific for high-gamma, we repeated this analysis of the
ECoG looking at the correlation coefficient between the raw, unfiltered
voltages at sites of interest. Qualitatively similar results were obtained
with respect to correspondence of ECoG and CCEP (see Fig. 84, B).

Results

We examined directed networks derived from electrically evoked
potentials recorded from subdural electrodes in 15 subjects un-
dergoing intracranial monitoring for surgical evaluation of epi-
lepsy (clinical information and demographics are presented in
Table 1). In total, 1384 cortical sites were probed. The workflow
for this analysis is depicted in Figure 1 (see Materials and Meth-
ods). Briefly, single-pulse stimulation elicited evoked potentials
(CCEPs) that were converted to Z-scores based on the response
amplitude of the early (<50 ms, A1) segment of the CCEP. Each
stimulation and associated responses represent one row in the
connectivity matrix. This weighted connectivity matrix was
thresholded and graph theoretical measures were calculated to
quantify network topology, directionality, and reciprocity.

Directed networks derived from CCEPs are reproducible and
exhibit small world topology

Following the construction of CCEP directed networks, we ex-
amined network topology and determined its sensitivity to dis-
tance and network density. Degree was calculated as a function of
distance from the stimulation site and response amplitude. CCEP
networks were composed of abundant short-range connections
and few long-range connections (Fig. 2B). The relationship be-
tween network density (k) and significance threshold of the
evoked potential (z = 0.5—14) is depicted in Figure 2C. At high-
response thresholds, the density of the network decreases as ex-
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pected. We next determined whether CCEP networks exhibit
small-world topology, a feature of human brain networks char-
acterized by a higher-clustering coefficient and shorter path
length compared with random networks (Sporns and Honey,
2006; Achard and Bullmore, 2007; Bassett et al., 2008). For each
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response threshold, clustering coefficient and path length were
normalized to 100 random networks with equivalent total inde-
gree and outdegree as the CCEP network. CCEP directed net-
works exhibited small world properties in the range of z = 614,
with a mean clustering coefficient of 2.0 in this range of thresh-
olds (Fig. 2C). This measure is in general agreement with reports
from other human brain networks (Achard and Bullmore, 2007;
Bassett et al., 2008; Yan and He, 2011).

We next examined how network properties varied as a func-
tion of the threshold used to binarize the CCEP network. At each
node, outdegree measures at a threshold of z = 6 were plotted
against those at z = 10 (Fig. 3D). A linear relationship (r = 0.96,
p < 0.01) was observed, supporting the notion that CCEP net-
works are largely density insensitive in the threshold range that
exhibit small world topology. Then, we investigated the extent to
which network properties derived from CCEPs are influenced by
distance between the stimulating and recording electrode. One
would predict that electrodes close to the stimulation site would
exhibit larger evoked potentials, and thus electrodes with the
most neighbors (i.e., at the center of the grid) exhibit the highest
number of significant connections. To estimate the effects of this
distance bias, we generated simulated data from a model in which
CCEP amplitude was inversely proportional to the distance from
the stimulation site (Fig. 3E). As expected, the nodes with highest
degree under this model were located in the center of the grid.
The distance effect does not resemble the empirical data, how-
ever, and in particular it cannot explain how regions with the
highest degree empirically were located at the corner of the grid,
with few proximal electrodes (Fig. 3E). Thus, distance alone does
not account for the network topographies we report.

Network analysis of CCEPs reveals projectors and integrators
of neocortical circuits

To examine the topological organization of the cortex, we calcu-
lated network measures including causal indegree, outdegree, de-
gree, and net flow at each electrode. Analysis from a single subject
demonstrates the transformation from the suprathreshold CCEP
response profile at a single stimulation site (Fig. 5A,B) to the
cortical representation of network measures (Fig. 5C). In this
subject, regions of high outdegree and degree centrality are local-
ized to sensorimotor regions, whereas temporal lobe nodes ex-
hibit high indegree. Causal flow (outdegree — indegree) was in
this subject, outward at sensorimotor cortex and inwards in the
temporal lobe (Fig. 5C). Examples from six subjects illustrate
consistently high outdegree measures in para-central cortex (Fig.
6). Indegree, which exhibited a less consistent topography across
subjects, is discussed below.

To provide a subject-averaged measure of the key projectors
and integrator nodes, network measures were averaged across
cortical regions. After determining the cortical area where each
electrode was implanted based on the cortical parcellation proce-
dure (see Materials and Methods), we calculated the mean net-
work measures across all electrodes in each region (Fig. 7). The
precentral gyrus, the postcentral gyrus, lingual gyrus, and the
temporal pole exhibited the highest causal outdegree, and casual
outflow. The rostral and caudal middle frontal gyrus and superior
and inferior regions of parietal cortex exhibited the highest inde-
gree, and also exhibited net inflow of influence.

Relationship to excitability

It is important to minimize the possibility that the reported re-
gional differences in causal influence are not driven by differences
in the excitability of the neural tissues beneath the stimulated elec-
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trodes. We aimed to rule out this possibility in two ways. First, we
examined the relationship between network measures and local ex-
citability, where local excitability was estimated using the CCEP pro-
file of nearby electrodes. Second, we examined the indegree and
outdegree of seizure onset zones, which are known to exhibit in-
creased excitability (Valentin et al., 2005; Enatsu et al., 2012).

First, to investigate excitability via local CCEP connectivity,
we computed the (1) mean magnitude of local (<15 mm) CCEP
responses upon stimulation of each site and (2) the network mea-
sure (degree, indegree, outdegree) associated with that site.
Within all individual subjects, and for both the Al and A2
poststimulation interval, no significant relationship existed be-
tween the mean local connectivity around each stimulation site
and the node degree (7; gegree, 1ocal = 0035 Ta2 degree, local = 0-04),
OUtdegree (rAl outdegree, local = 006) T'A2 outdegree, local = 007)’ and
indegree (rAl indegree, local = 0.04; T'A2 indegree, local = 002)

Second, to relate intrinsically excitable tissue within the sei-
zure onset zone to network measures, we characterized the CCEP
indegree and outdegee within the seizure onset zones identified
within each individual subject. Seizure onset zone regions ex-
hibited higher indegree than regions not involved in the sei-
zure onset (Fig. 4; p < 0.05). No significant differences were
observed between seizure onset zone regions and outdegree.
Similar results were observed when using the non-z-
transformed and the z-transformed CCEP amplitudes (results
reported were based on non-z-transformed amplitudes).

Relating network measures to functional traits of

cortical subsystems

We next asked how underlying cortical function and anatomy
relates to the strength of evoked potentials in that region. We
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Figure4.  Relationship of seizure onset zone to CCEP networks measures. Relationship between

the degree, indegree, and outdegree at electrodes in the seizure onset zone compared with those
outside the seizure onset zone. Error bars represent SEM; *p << 0.05.

defined a region to be involved in a certain function if high-
frequency ESM of that region elicited a behavioral response (e.g.,
speech arrest, hand motor response). Electrodes that elicited mo-
tor responses during ESM exhibited significantly higher causal
indegree, outdegree, degree centrality, and net outflow compared
with electrodes not involved in movement (p < 0.01, two-tailed
t test). Electrodes involved in language (expressive or receptive
speech) exhibited significantly higher causal indegree, degree
centrality, and causal outflow compared with electrodes not in-
volved in these functions (Fig. 7).

Distinct functional and effective connectivity profiles

How do directed, effective connectivity measures compare to
undirected, functional connectivity measures? To investigate
this, we compared the single-site and global connectivity profiles
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a line connecting the stimulating electrode to the response site. ¢, Network measures across all stimulation sites. Network measures are represented at each node with a heat map according to its

z-thresholded network measure.

Figure 6.

of CCEPs (effective connectivity) and ECoG (functional connec-
tivity). The single-site connectivity profiles are the set of connec-
tions between a given electrode pair and all others, while the
global connectivity profiles reflect overall connectedness regard-
less of spatial distribution (see Materials and Methods). Across all
ROIs and patients, the mean correspondence between local con-
nectivity profiles (or the spatial correspondence of network mea-
sures) for ECoG and CCEP networks were r = 0.38 (range r =
0.25-0.52 across patients) for the Al timeframe and r = 0.36
(range r = 0.23—0.54) for the A2 timeframe. However, because

Z outdegree
2

+1
0
-1
-2

Causal outdegree measures across subjects. Note the strong outdegree around the central sulcus. Warm colors represent regions with strong outdegree.

these correlations are computed on local connectivity profiles,
they normalize the mean connectivity of each node, and do not
indicate whether global network features (such as degree) are
shared across the ECoG and CCEP networks.

Therefore, we next investigated the relationship between
global connectivity profiles of CCEP and ECoG networks by cre-
ating group-based surface maps (see Materials and Methods).
ECoG network analysis revealed high degree centrality in the
anterior temporal, prefrontal, and superior parietal regions (Fig.
8A). CCEP network analysis revealed regions of strong causal
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degree, outdegree, and outflow localized to precentral and post-  inflow was localized to prefrontal, parietal, and anterior STG
central gyrus, supplementary motor area, and posterior MTG  (Fig. 6B). Compared with resting ECoG degree, CCEP outdegree,
and ITG (Fig. 8C). High causal indegree was observed in precen-  degree, and flow exhibited a strong negative correlation (Fig. 8D;

tral and postcentral, parietal, and prefrontal regions, and causal —0.60; .

ccep outdegree, ecog degree ~

—0.57;

ccep degree, ecog degree =
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rccep net flow, ecog degree = _046> P < 0001’
parcellation-based comparison), whereas
CCEP indegree exhibited a weaker albeit
significant negative correlation with the
resting ECoG degree map (r = —0.24).
CCEP measures demonstrated a weaker,
but similar, relationship when ECoG degree
was defined by a simple correlation of the raw
unfiltered voltage (Fig. 8B; Tecog 1GP degree,
ecog raw degree = 0.59; Tecep outdegree, ecog degree =
—0.38; rccep degree, ecog degree —0.24;
r

ccep net flow, ecog degree = _0'46; rccep indegree,

ecogdegree = 0.14). CCEP measures also dem-
onstrated a similar relationship when ECoG
degree was calculated using faster frequen-

cies (>1 Hz) within the HGP signal (r,

outdegree, ecog degree = —0.32; r,

ccep degree, ecog
degree = —0.15; rccep net flow, ecog degree
—0.45;,

ccep indegree, ecog degree = 024) Slower
frequencies (<0.1 Hz) within the HGP
range were not examined for reasons dis-
cussed previously (Keller et al., 2013). Simi-
lar findings were also observed using CCEP
values within the A2 timeframe (data not
shown). In summary, whereas single-site
connectivity profiles of ECoG and CCEP
maps were relatively strongly correlated, the
global connectivity profiles of ECoG and
CCEP maps were negatively correlated.

cep

Figure 9.
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Analysis was performed for (€) each electrode and (D) grouped electrodes in a region-based analysis.

CCEP networks exhibit low functional

reciprocity between cortical regions

What could explain the differences in global connectivity between
effective and functional networks? We hypothesized (resting) func-
tional connections seen with ECoG were most likely to correspond
to (stimulation-driven) effective connections seen with CCEP when
the effective connections were reciprocal. To test this hypothesis, we
firsthad to characterize the proportion of bidirectional interactions (rec-
iprocity index, B) across nodes and subjects in our CCEP data.

In each subject, the level of reciprocity varied widely across
nodes (Fig. 9A, B). Across all subjects and nodes, the mean reci-
procity (B,,can) Was 9.4% (range, B = 0.0-50.2%, 11.1% SD). In
both the empirical CCEP data as well as the simulated CCEP data
examining reciprocal interactions, reciprocity decreased as dis-
tance from the stimulation site increased (Fig. 9C,D). Short-
range (<5 cm) reciprocity was found to be significantly higher
than predicted by the control analysis (see Materials and Meth-
ods) across all subjects in the A1 timeframe (Fig. 9C; CCEP, ., =
24.1%, model,,,.,, = 10.8%, p < 0.001, two-tailed t test), whereas
long-range connections did not exhibit a significant change in reciproc-
ity compared with the control analysis (Fig. 9D; CCEP,,..,, = 9.1%,
model, .., = 9.7%). The A2 timeframe demonstrated similar
findings (data not shown). To ensure that the cutoff for defining
significance did not affect these results, we recalculated reciprocity
using three levels of threshold. As expected, reciprocity increased for
lower thresholds CCEP, _ , = 24.1% (£5.2 SE); CCEP, _ , = 29.5%
(*£4.6 SE); CCEP, _ , = 46.2% (*+4.8% SE) for short-range connec-
tions and CCEP, _ , = 9.1% (*3.1% SE); CCEP, _ , = 12.1%
(%£4.9% SE); CCEP, _ , = 29.7% (*6.1% SE) for long-range con-
nections. For each threshold, short-range reciprocity was signif-
icantly higher than expected from a random network model,
while long-range reciprocity was not. For the regional-based rec-
iprocity analysis, reciprocity was higher than for the electrode-

based approach, with CCEP regional-based reciprocity at 73.1%
and 42.3% for short- and long-range connections, respectively
(Fig. 9C,D). Both short- and long-range connectivity did not
exhibit higher reciprocity than expected given the degree distri-
bution of the network.

Reciprocity of stimulation-evoked responses predicts the
strength of spontaneous interareal correlations

Having mapped the reciprocity of CCEP effective connections,
we investigated its relationship with interareal resting ECoG
functional connectivity. One might hypothesize that specific re-
ciprocal connections are sites of important functional interac-
tion, which may be reflected in stronger functional connectivity
(i.e., dynamical correlation) between regions. Figure 10A illus-
trates CCEP input maps (examining the evoked response mea-
sured at the center node when stimulating other regions) as well
as CCEP output maps (examining the CCEP response measured
when stimulating the center node) and ECoG functional connec-
tivity maps for a range of electrodes. Across subjects, regions of
strong ECoG correlation demonstrated larger CCEP responses
than those regions of weak ECoG correlation (Fig. 10B, top; p <
0.001). Note in Figure 8A longer-range stimulation-evoked re-
sponses (unidirectional connections) occasionally corresponded
to a strong ECoG correlation (black arrowhead), but edges with
reciprocal CCEP connectivity (overlap between CCEP inputs and
outputs) were more likely to exhibit ECoG correlation (white
arrowheads). To quantify this, we mapped the strength of the
resting ECoG connectivity as a function of the type of CCEP
connection (bidirectional significant connection, unidirectional
significant connection, no significant connection). Across sub-
jects, for short distances (<5 cm), bidirectional CCEPs mapped
to regions of the strongest ECoG correlations, followed by unidi-
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rectional responses, with regions of subthreshold CCEP re-
sponses corresponding to the weakest ECoG correlation values
(Fig. 10C, top; p < 0.01 corrected for after multiple compari-
sons). This trend was consistent in 12/15 subjects before normal-
ization (p = 0.02, paired ¢ test). In contrast, for long-range
connections (>5 cm), the strength of ECoG correlations did not
vary as a function of the reciprocity or the presence of CCEP
connections (Fig. 10B, C; bottom). For the regional-based anal-
ysis, long-range bidirectional CCEPs between parcellations ex-
hibited stronger resting ECoG connectivity compared with
unidirectional and no significant CCEPs. However, no significant
difference was observed for short-range connections (Fig. 10D).

Discussion

This study provides important insights into the directedness of
networks in human cortex using direct stimulation and record-
ing. Our findings can be summarized as follows: (1) peri-
Rolandic cortex and frontal and temporal regions that were
identified to have language or motor function with electrical
stimulation mapping, exhibited the highest causal outdegree,
centrality, and projected influence whereas the superior parietal,
lateral temporal, and lateral prefrontal regions exhibited strong
causal indegree and received influence; (2) maps of effective and
functional connectivity demonstrated positively correlated
single-site connectivity profiles but negatively correlated overall
topology; and (3) functional corticocortical reciprocity across all
regions was low, decreased with distance, and at short distances
reciprocal connections were associated with strong interareal in-
teractions at rest.

Language and sensorimotor networks: central cortical hubs?

It has long been known that the motor cortex projects a copy of
internally generated movement to other sensory systems to esti-
mate the intrinsic response and measure the influence from ex-
ternal stimuli. Although the behavioral effect of this “corollary

discharge” or “efference copy” is well described, the neural rep-
resentation of these projections are not well characterized in hu-
mans (Poulet and Hedwig, 2007). This would likely manifest in
outgoing projections from motor cortex to a diverse array of
cortical and subcortical regions. We observed sensorimotor re-
gions exhibiting abundant connections to other cortical regions
in language, somatosensory, auditory, and visual cortex. It is pos-
sible this observation may represent the neural correlate of the
corollary discharge; however, further work coupling electrophys-
iology with behavioral studies is necessary to experimentally val-
idate this finding. Nevertheless, the high centrality of motor
cortex demonstrates that internal motor representation appears
to be a ubiquitous feature of functional networks.

It is not likely that differences in the topology of networks
across cortical regions can be attributed to the intrinsic excitabil-
ity of the stimulated region. First, no relationship between the
strength of neighboring CCEPs and outdegree measures was ob-
served, supporting the notion that changes in excitability do not
underlie differences in network measures. Second, seizures arise
from the imbalance of excitation and inhibition that can result in
high intrinsic excitability within the seizure onset zone (Valentin
et al., 2005). Therefore, if CCEPs reflect the intrinsic excitability
of a given region, stimulation of the seizure onset zone should
result in stronger and more abundant CCEPs at other regions. To
the contrary, we found slightly higher indegree but no difference
in outdegree in the seizure onset zone. Together, these findings
suggest that regions of high outdegree including sensorimotor
and posterior temporal regions does not reflect differences in
excitability and instead are likely the major cortical projectors of
the brain.

Asymmetry in large-scale networks

Although it is well established that the majority of synaptic con-
nections in the brain are reciprocal in nature (Felleman and Van
Essen, 1991), an asymmetric global connectivity would allow the
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efficient processing, integration, and storage of incoming sensory
stimuli. We observed a high degree of asymmetry (low reciproc-
ity) among large-scale cortical circuits. As expected, this level of
reciprocity was higher at lower significance thresholds. Tracer
studies largely focus on local connectivity within a given sensory
region, which tends to be strongly interconnected with feedfor-
ward and feedback connections (Felleman and Van Essen, 1991).
It is important to note that the presence of a reciprocal anatom-
ical connection does not necessarily indicate a reciprocal func-
tional or effective connection. Previous examination of the
directionality of the anterior and posterior language cortices re-
vealed that although stimulation of either language region re-
sulted in CCEPs at the other language region, an asymmetry was
observed, wherein stimulation of anterior language regions elic-
ited stronger CCEPs in posterior language regions than anterior
CCEPs elicited from stimulation of posterior regions (Matsu-
moto et al., 2004). Quantification of CCEP reciprocity in a single
sensory system has reported reciprocal connections 75-95% of
time within the sensorimotor network, but decreased to 25-50%
when evaluating reciprocity at specific electrodes (Matsumoto et
al., 2007). These reciprocity values are in line with those in the
current study, especially considering that reciprocity was calcu-
lated across multiple functional systems. As previous tracer and
CCEP studies examined shorter-range connectivity often focus-
ing on a single sensory system, it is not surprising that we ob-
served this higher level of functional asymmetry across networks.

Compared with our model, the frequency of short-range su-
prathreshold CCEPs was found to be higher than expected for
both timeframes of the CCEP but no different for long-range
interactions. The short-range observations are in line with these
networks exhibiting small-world topology (Bassett and Bull-
more, 2006; Sporns and Honey, 2006). It is important to note that
this asymmetry between regions may not only reflect differences
in direct synaptic pathways. For example, stimulation of site A
may elicit evoked responses at site B through direct corticocorti-
cal pathways, whereas stimulation of site B may elicit an evoked
response at site A through a cortical or subcortical intermediate
region. It is also important to note that some of the reciprocal
connections in the brain may be missed due to the electrode grid
spacing for each patient. Nevertheless, under either interpreta-
tion, the present results constitute causal evidence of large-scale
asymmetric propagation across the brain.

Reciprocity influences interareal functional connectivity

Although corticocortical interactions are largely asymmetric,
their reciprocal nature appears to be associated with the strength
of spontaneous interareal interactions. Network topology from
effective connectivity networks (high centrality at peri-Rolandic
cortex in CCEP) differed from observations in functional con-
nectivity networks (low centrality in sensorimotor cortex and
high centrality in parietal, anterior temporal, and prefrontal re-
gions in resting ECoG) in the same subjects. The topology of
functional connectivity derived from resting ECoG networks
support previous literature on resting fMRI and diffusion tensor
imaging which report low centrality in primary sensory regions
and high centrality in the default mode network (Hagmann et al.,
2008; Buckner et al., 2009; Zuo et al., 2012). The corroboration of
functional connectivity maps in these subjects with the literature
reinforces the notion that electrode sampling bias does not con-
found our results. However, within-subject differences between
effective and functional connectivity were unexpected. Quantifi-
cation of the local and global connectivity profile of both modal-
ities demonstrated positive correspondence between the local
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connectivity profiles and negative correspondence between the
global connectivity profiles.

We believe that these techniques measuring slightly different
neuronal processes account for the discrepancy between local
and global connectivity profiles and may shed light on the neural
substrates underlying resting state functional connectivity. It is
first important to note that although findings presented here as
well as previous studies both demonstrated a positive correspon-
dence between CCEPs and resting state measures in local connec-
tivity profiles (Keller et al., 2011), the strength and spatial spread
of CCEPs explained only ~20% of the functional connectivity
profile, suggesting that CCEPs and functional connectivity rep-
resent slightly different neuronal processes. The motor network
can serve as an example to explain these discrepancies between
modalities. Stimulation of the motor cortex results in strong
evoked potentials both in regions exhibiting strong resting ECoG
correlations but also at more distant sites exhibiting low resting
ECoG correlations. These connectivity profiles result in a positive
(but not very high) correspondence between modalities. In this
example, a high outdegree in motor cortex for CCEPs and a low
resting ECoG degree would result in a negative correspondence
in global connectivity profiles. In this fashion, we believe that
CCEPs may probe the complete set of available anatomical con-
nections, whereas resting functional connectivity highlights the
subset used during specific brain states. Evaluating the relation-
ship between CCEP and resting ECoG topology during different
brain states would directly test this hypothesis. Another explana-
tion for the discrepancy between local and global connectivity
profiles is that the calculation of the local connectivity profile
does not account for differences in CCEP reciprocity and instead
only evaluates unidirectional responses. We demonstrated that re-
gions underlying reciprocal effective connections exhibit stronger
functional connections, suggesting that reciprocal connectivity in
the brain may underlie the strength of functional interactions.

Implications and limitations
CCEP networks described here provide extensive coverage of the
lateral and inferior human cortex. Although this method cannot
provide whole brain coverage compared with fMRI or diffusion
tensor imaging, it does exhibit three notable advantages: (1) the
ability to resolve direction of flow, (2) the direct recording of
neural activity on the cortical surface, and (3) high spatiotempo-
ral resolution. Although each subject did not provide whole brain
coverage, group analysis allowed the sampling of the majority of
cortical regions on the lateral, medial, and inferior cortex.
Although these subjects provide access to a direct measure of
neural activity in awake humans, it is difficult to interpolate find-
ings about brain networks from these patients to the general pop-
ulation. However, the heterogeneous etiology and localization of
seizures in the patient population, removal of electrodes in the
seizure onset zone for this analysis, and the consistency of find-
ings across subjects support the notion that these results may be
interpolated with some level of confidence. Future studies will
help elucidate the neural mechanism underlying CCEPs. Addi-
tionally, experiments enhancing our understanding of how be-
havioral states modulate functional and effective connectivity
will aid in the interpretation of findings presented here.
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